170 lines
4.6 KiB
Java
170 lines
4.6 KiB
Java
|
|
|
|
import edu.princeton.cs.introcs.In;
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac Cycle.java
|
|
* Dependencies: Graph.java Stack.java
|
|
*
|
|
* Identifies a cycle.
|
|
* Runs in O(E + V) time.
|
|
*
|
|
* % java Cycle tinyG.txt
|
|
* 3 4 5 3
|
|
*
|
|
* % java Cycle mediumG.txt
|
|
* 15 0 225 15
|
|
*
|
|
* % java Cycle largeG.txt
|
|
* 996673 762 840164 4619 785187 194717 996673
|
|
*
|
|
*************************************************************************/
|
|
|
|
/**
|
|
* The Cycle class represents a data type for
|
|
* determining whether an undirected graph has a cycle.
|
|
* The hasCycle operation determines whether the graph has
|
|
* a cycle and, if so, the cycle operation returns one.
|
|
*
|
|
* This implementation uses depth-first search.
|
|
* The constructor takes time proportional to V + E
|
|
* (in the worst case),
|
|
* where V is the number of vertices and E is the number of edges.
|
|
* Afterwards, the hasCycle operation takes constant time;
|
|
* the cycle operation takes time proportional
|
|
* to the length of the cycle.
|
|
*
|
|
* For additional documentation, see <a href="/algs4/41graph">Section 4.1</a> of
|
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
|
*
|
|
* @author Robert Sedgewick
|
|
* @author Kevin Wayne
|
|
*/
|
|
public class Cycle {
|
|
private boolean[] marked;
|
|
private int[] edgeTo;
|
|
private Stack<Integer> cycle;
|
|
|
|
/**
|
|
* Determines whether the undirected graph G has a cycle and, if so,
|
|
* finds such a cycle.
|
|
* @param G the graph
|
|
*/
|
|
public Cycle(Graph G) {
|
|
if (hasSelfLoop(G)) return;
|
|
if (hasParallelEdges(G)) return;
|
|
marked = new boolean[G.V()];
|
|
edgeTo = new int[G.V()];
|
|
for (int v = 0; v < G.V(); v++)
|
|
if (!marked[v])
|
|
dfs(G, -1, v);
|
|
}
|
|
|
|
|
|
// does this graph have a self loop?
|
|
// side effect: initialize cycle to be self loop
|
|
private boolean hasSelfLoop(Graph G) {
|
|
for (int v = 0; v < G.V(); v++) {
|
|
for (int w : G.adj(v)) {
|
|
if (v == w) {
|
|
cycle = new Stack<Integer>();
|
|
cycle.push(v);
|
|
cycle.push(v);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// does this graph have two parallel edges?
|
|
// side effect: initialize cycle to be two parallel edges
|
|
private boolean hasParallelEdges(Graph G) {
|
|
marked = new boolean[G.V()];
|
|
|
|
for (int v = 0; v < G.V(); v++) {
|
|
|
|
// check for parallel edges incident to v
|
|
for (int w : G.adj(v)) {
|
|
if (marked[w]) {
|
|
cycle = new Stack<Integer>();
|
|
cycle.push(v);
|
|
cycle.push(w);
|
|
cycle.push(v);
|
|
return true;
|
|
}
|
|
marked[w] = true;
|
|
}
|
|
|
|
// reset so marked[v] = false for all v
|
|
for (int w : G.adj(v)) {
|
|
marked[w] = false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Does the graph have a cycle?
|
|
* @return true if the graph has a cycle, false otherwise
|
|
*/
|
|
public boolean hasCycle() {
|
|
return cycle != null;
|
|
}
|
|
|
|
/**
|
|
* Returns a cycle if the graph has a cycle, and null otherwise.
|
|
* @return a cycle (as an iterable) if the graph has a cycle,
|
|
* and null otherwise
|
|
*/
|
|
public Iterable<Integer> cycle() {
|
|
return cycle;
|
|
}
|
|
|
|
private void dfs(Graph G, int u, int v) {
|
|
marked[v] = true;
|
|
for (int w : G.adj(v)) {
|
|
|
|
// short circuit if cycle already found
|
|
if (cycle != null) return;
|
|
|
|
if (!marked[w]) {
|
|
edgeTo[w] = v;
|
|
dfs(G, v, w);
|
|
}
|
|
|
|
// check for cycle (but disregard reverse of edge leading to v)
|
|
else if (w != u) {
|
|
cycle = new Stack<Integer>();
|
|
for (int x = v; x != w; x = edgeTo[x]) {
|
|
cycle.push(x);
|
|
}
|
|
cycle.push(w);
|
|
cycle.push(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Unit tests the Cycle data type.
|
|
*/
|
|
public static void main(String[] args) {
|
|
In in = new In(args[0]);
|
|
Graph G = new Graph(in);
|
|
Cycle finder = new Cycle(G);
|
|
if (finder.hasCycle()) {
|
|
for (int v : finder.cycle()) {
|
|
StdOut.print(v + " ");
|
|
}
|
|
StdOut.println();
|
|
}
|
|
else {
|
|
StdOut.println("Graph is acyclic");
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|