import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac Cycle.java * Dependencies: Graph.java Stack.java * * Identifies a cycle. * Runs in O(E + V) time. * * % java Cycle tinyG.txt * 3 4 5 3 * * % java Cycle mediumG.txt * 15 0 225 15 * * % java Cycle largeG.txt * 996673 762 840164 4619 785187 194717 996673 * *************************************************************************/ /** * The Cycle class represents a data type for * determining whether an undirected graph has a cycle. * The hasCycle operation determines whether the graph has * a cycle and, if so, the cycle operation returns one. * * This implementation uses depth-first search. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the hasCycle operation takes constant time; * the cycle operation takes time proportional * to the length of the cycle. * * For additional documentation, see Section 4.1 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class Cycle { private boolean[] marked; private int[] edgeTo; private Stack cycle; /** * Determines whether the undirected graph G has a cycle and, if so, * finds such a cycle. * @param G the graph */ public Cycle(Graph G) { if (hasSelfLoop(G)) return; if (hasParallelEdges(G)) return; marked = new boolean[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V(); v++) if (!marked[v]) dfs(G, -1, v); } // does this graph have a self loop? // side effect: initialize cycle to be self loop private boolean hasSelfLoop(Graph G) { for (int v = 0; v < G.V(); v++) { for (int w : G.adj(v)) { if (v == w) { cycle = new Stack(); cycle.push(v); cycle.push(v); return true; } } } return false; } // does this graph have two parallel edges? // side effect: initialize cycle to be two parallel edges private boolean hasParallelEdges(Graph G) { marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) { // check for parallel edges incident to v for (int w : G.adj(v)) { if (marked[w]) { cycle = new Stack(); cycle.push(v); cycle.push(w); cycle.push(v); return true; } marked[w] = true; } // reset so marked[v] = false for all v for (int w : G.adj(v)) { marked[w] = false; } } return false; } /** * Does the graph have a cycle? * @return true if the graph has a cycle, false otherwise */ public boolean hasCycle() { return cycle != null; } /** * Returns a cycle if the graph has a cycle, and null otherwise. * @return a cycle (as an iterable) if the graph has a cycle, * and null otherwise */ public Iterable cycle() { return cycle; } private void dfs(Graph G, int u, int v) { marked[v] = true; for (int w : G.adj(v)) { // short circuit if cycle already found if (cycle != null) return; if (!marked[w]) { edgeTo[w] = v; dfs(G, v, w); } // check for cycle (but disregard reverse of edge leading to v) else if (w != u) { cycle = new Stack(); for (int x = v; x != w; x = edgeTo[x]) { cycle.push(x); } cycle.push(w); cycle.push(v); } } } /** * Unit tests the Cycle data type. */ public static void main(String[] args) { In in = new In(args[0]); Graph G = new Graph(in); Cycle finder = new Cycle(G); if (finder.hasCycle()) { for (int v : finder.cycle()) { StdOut.print(v + " "); } StdOut.println(); } else { StdOut.println("Graph is acyclic"); } } }