75 lines
2.8 KiB
Java
75 lines
2.8 KiB
Java
|
/*
|
||
|
This is java program to implement 0/1 Knapsack problem. The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a mass and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
|
||
|
*/
|
||
|
|
||
|
//This is a sample program to implement a 0/1 knapsack algorithm
|
||
|
import java.util.Scanner;
|
||
|
|
||
|
public class Zero_One_Knapsack
|
||
|
{
|
||
|
public void solve(int[] wt, int[] val, int W, int N)
|
||
|
{
|
||
|
int NEGATIVE_INFINITY = Integer.MIN_VALUE;
|
||
|
int[][] m = new int[N + 1][W + 1];
|
||
|
int[][] sol = new int[N + 1][W + 1];
|
||
|
for (int i = 1; i <= N; i++)
|
||
|
{
|
||
|
for (int j = 0; j <= W; j++)
|
||
|
{
|
||
|
int m1 = m[i - 1][j];
|
||
|
int m2 = NEGATIVE_INFINITY;
|
||
|
if (j >= wt[i])
|
||
|
m2 = m[i - 1][j - wt[i]] + val[i];
|
||
|
m[i][j] = Math.max(m1, m2);
|
||
|
sol[i][j] = m2 > m1 ? 1 : 0;
|
||
|
}
|
||
|
}
|
||
|
int[] selected = new int[N + 1];
|
||
|
for (int n = N, w = W; n > 0; n--)
|
||
|
{
|
||
|
if (sol[n][w] != 0)
|
||
|
{
|
||
|
selected[n] = 1;
|
||
|
w = w - wt[n];
|
||
|
}
|
||
|
else
|
||
|
selected[n] = 0;
|
||
|
}
|
||
|
System.out.print("\nItems with weight ");
|
||
|
for (int i = 1; i < N + 1; i++)
|
||
|
if (selected[i] == 1)
|
||
|
System.out.print(val[i] +" ");
|
||
|
System.out.println("are selected by knapsack algorithm.");
|
||
|
}
|
||
|
public static void main (String[] args)
|
||
|
{
|
||
|
Scanner scan = new Scanner(System.in);
|
||
|
Zero_One_Knapsack ks = new Zero_One_Knapsack();
|
||
|
System.out.println("Enter number of elements ");
|
||
|
int n = scan.nextInt();
|
||
|
int[] wt = new int[n + 1];
|
||
|
int[] val = new int[n + 1];
|
||
|
System.out.println("Enter weight for "+ n +" elements");
|
||
|
for (int i = 1; i <= n; i++)
|
||
|
wt[i] = scan.nextInt();
|
||
|
System.out.println("Enter value for "+ n +" elements");
|
||
|
for (int i = 1; i <= n; i++)
|
||
|
val[i] = scan.nextInt();
|
||
|
System.out.println("Enter knapsack weight ");
|
||
|
int W = scan.nextInt();
|
||
|
ks.solve(wt, val, W, n);
|
||
|
scan.close();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Enter number of elements
|
||
|
5
|
||
|
Enter weight for 5 elements
|
||
|
01 56 42 78 12
|
||
|
Enter value for 5 elements
|
||
|
50 30 20 10 50
|
||
|
Enter knapsack weight
|
||
|
150
|
||
|
|
||
|
Items with weight 50 30 20 50 are selected by knapsack algorithm.
|