/* This is java program to implement 0/1 Knapsack problem. The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a mass and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. */ //This is a sample program to implement a 0/1 knapsack algorithm import java.util.Scanner; public class Zero_One_Knapsack { public void solve(int[] wt, int[] val, int W, int N) { int NEGATIVE_INFINITY = Integer.MIN_VALUE; int[][] m = new int[N + 1][W + 1]; int[][] sol = new int[N + 1][W + 1]; for (int i = 1; i <= N; i++) { for (int j = 0; j <= W; j++) { int m1 = m[i - 1][j]; int m2 = NEGATIVE_INFINITY; if (j >= wt[i]) m2 = m[i - 1][j - wt[i]] + val[i]; m[i][j] = Math.max(m1, m2); sol[i][j] = m2 > m1 ? 1 : 0; } } int[] selected = new int[N + 1]; for (int n = N, w = W; n > 0; n--) { if (sol[n][w] != 0) { selected[n] = 1; w = w - wt[n]; } else selected[n] = 0; } System.out.print("\nItems with weight "); for (int i = 1; i < N + 1; i++) if (selected[i] == 1) System.out.print(val[i] +" "); System.out.println("are selected by knapsack algorithm."); } public static void main (String[] args) { Scanner scan = new Scanner(System.in); Zero_One_Knapsack ks = new Zero_One_Knapsack(); System.out.println("Enter number of elements "); int n = scan.nextInt(); int[] wt = new int[n + 1]; int[] val = new int[n + 1]; System.out.println("Enter weight for "+ n +" elements"); for (int i = 1; i <= n; i++) wt[i] = scan.nextInt(); System.out.println("Enter value for "+ n +" elements"); for (int i = 1; i <= n; i++) val[i] = scan.nextInt(); System.out.println("Enter knapsack weight "); int W = scan.nextInt(); ks.solve(wt, val, W, n); scan.close(); } } /* Enter number of elements 5 Enter weight for 5 elements 01 56 42 78 12 Enter value for 5 elements 50 30 20 10 50 Enter knapsack weight 150 Items with weight 50 30 20 50 are selected by knapsack algorithm.