182 lines
5.5 KiB
Java
182 lines
5.5 KiB
Java
|
|
||
|
|
||
|
import edu.princeton.cs.introcs.In;
|
||
|
import edu.princeton.cs.introcs.StdOut;
|
||
|
|
||
|
/*************************************************************************
|
||
|
* Compilation: javac GabowSCC.java
|
||
|
* Execution: java GabowSCC V E
|
||
|
* Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java
|
||
|
*
|
||
|
* Compute the strongly-connected components of a digraph using
|
||
|
* Gabow's algorithm (aka Cheriyan-Mehlhorn algorithm).
|
||
|
*
|
||
|
* Runs in O(E + V) time.
|
||
|
*
|
||
|
* % java GabowSCC tinyDG.txt
|
||
|
* 5 components
|
||
|
* 1
|
||
|
* 0 2 3 4 5
|
||
|
* 9 10 11 12
|
||
|
* 6 8
|
||
|
* 7
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
/**
|
||
|
* The GabowSCC class represents a data type for
|
||
|
* determining the strong components in a digraph.
|
||
|
* The id operation determines in which strong component
|
||
|
* a given vertex lies; the areStronglyConnected operation
|
||
|
* determines whether two vertices are in the same strong component;
|
||
|
* and the count operation determines the number of strong
|
||
|
* components.
|
||
|
|
||
|
* The component identifier of a component is one of the
|
||
|
* vertices in the strong component: two vertices have the same component
|
||
|
* identifier if and only if they are in the same strong component.
|
||
|
|
||
|
*
|
||
|
* This implementation uses the Gabow's algorithm.
|
||
|
* The constructor takes time proportional to V + E
|
||
|
* (in the worst case),
|
||
|
* where V is the number of vertices and E is the number of edges.
|
||
|
* Afterwards, the id , count , and areStronglyConnected
|
||
|
* operations take constant time.
|
||
|
* For alternate implementations of the same API, see
|
||
|
* {@link KosarajuSharirSCC} and {@link TarjanSCC}.
|
||
|
*
|
||
|
* For additional documentation, see <a href="/algs4/42digraph">Section 4.2</a> of
|
||
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
||
|
*
|
||
|
* @author Robert Sedgewick
|
||
|
* @author Kevin Wayne
|
||
|
*/
|
||
|
public class GabowSCC {
|
||
|
|
||
|
private boolean[] marked; // marked[v] = has v been visited?
|
||
|
private int[] id; // id[v] = id of strong component containing v
|
||
|
private int[] preorder; // preorder[v] = preorder of v
|
||
|
private int pre; // preorder number counter
|
||
|
private int count; // number of strongly-connected components
|
||
|
private Stack<Integer> stack1;
|
||
|
private Stack<Integer> stack2;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Computes the strong components of the digraph G .
|
||
|
* @param G the digraph
|
||
|
*/
|
||
|
public GabowSCC(Digraph G) {
|
||
|
marked = new boolean[G.V()];
|
||
|
stack1 = new Stack<Integer>();
|
||
|
stack2 = new Stack<Integer>();
|
||
|
id = new int[G.V()];
|
||
|
preorder = new int[G.V()];
|
||
|
for (int v = 0; v < G.V(); v++) id[v] = -1;
|
||
|
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
if (!marked[v]) dfs(G, v);
|
||
|
}
|
||
|
|
||
|
// check that id[] gives strong components
|
||
|
assert check(G);
|
||
|
}
|
||
|
|
||
|
private void dfs(Digraph G, int v) {
|
||
|
marked[v] = true;
|
||
|
preorder[v] = pre++;
|
||
|
stack1.push(v);
|
||
|
stack2.push(v);
|
||
|
for (int w : G.adj(v)) {
|
||
|
if (!marked[w]) dfs(G, w);
|
||
|
else if (id[w] == -1) {
|
||
|
while (preorder[stack2.peek()] > preorder[w])
|
||
|
stack2.pop();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// found strong component containing v
|
||
|
if (stack2.peek() == v) {
|
||
|
stack2.pop();
|
||
|
int w;
|
||
|
do {
|
||
|
w = stack1.pop();
|
||
|
id[w] = count;
|
||
|
} while (w != v);
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of strong components.
|
||
|
* @return the number of strong components
|
||
|
*/
|
||
|
public int count() {
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Are vertices v and w in the same strong component?
|
||
|
* @param v one vertex
|
||
|
* @param w the other vertex
|
||
|
* @return true if vertices v and w are in the same
|
||
|
* strong component, and false otherwise
|
||
|
*/
|
||
|
public boolean stronglyConnected(int v, int w) {
|
||
|
return id[v] == id[w];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the component id of the strong component containing vertex v .
|
||
|
* @param v the vertex
|
||
|
* @return the component id of the strong component containing vertex v
|
||
|
*/
|
||
|
public int id(int v) {
|
||
|
return id[v];
|
||
|
}
|
||
|
|
||
|
// does the id[] array contain the strongly connected components?
|
||
|
private boolean check(Digraph G) {
|
||
|
TransitiveClosure tc = new TransitiveClosure(G);
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
for (int w = 0; w < G.V(); w++) {
|
||
|
if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Unit tests the GabowSCC data type.
|
||
|
*/
|
||
|
public static void main(String[] args) {
|
||
|
In in = new In(args[0]);
|
||
|
Digraph G = new Digraph(in);
|
||
|
GabowSCC scc = new GabowSCC(G);
|
||
|
|
||
|
// number of connected components
|
||
|
int M = scc.count();
|
||
|
StdOut.println(M + " components");
|
||
|
|
||
|
// compute list of vertices in each strong component
|
||
|
Queue<Integer>[] components = (Queue<Integer>[]) new Queue[M];
|
||
|
for (int i = 0; i < M; i++) {
|
||
|
components[i] = new Queue<Integer>();
|
||
|
}
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
components[scc.id(v)].enqueue(v);
|
||
|
}
|
||
|
|
||
|
// print results
|
||
|
for (int i = 0; i < M; i++) {
|
||
|
for (int v : components[i]) {
|
||
|
StdOut.print(v + " ");
|
||
|
}
|
||
|
StdOut.println();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|