import edu.princeton.cs.introcs.In;
import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac GabowSCC.java
* Execution: java GabowSCC V E
* Dependencies: Digraph.java Stack.java TransitiveClosure.java StdOut.java
*
* Compute the strongly-connected components of a digraph using
* Gabow's algorithm (aka Cheriyan-Mehlhorn algorithm).
*
* Runs in O(E + V) time.
*
* % java GabowSCC tinyDG.txt
* 5 components
* 1
* 0 2 3 4 5
* 9 10 11 12
* 6 8
* 7
*
*************************************************************************/
/**
* The GabowSCC class represents a data type for
* determining the strong components in a digraph.
* The id operation determines in which strong component
* a given vertex lies; the areStronglyConnected operation
* determines whether two vertices are in the same strong component;
* and the count operation determines the number of strong
* components.
* The component identifier of a component is one of the
* vertices in the strong component: two vertices have the same component
* identifier if and only if they are in the same strong component.
*
* This implementation uses the Gabow's algorithm.
* The constructor takes time proportional to V + E
* (in the worst case),
* where V is the number of vertices and E is the number of edges.
* Afterwards, the id , count , and areStronglyConnected
* operations take constant time.
* For alternate implementations of the same API, see
* {@link KosarajuSharirSCC} and {@link TarjanSCC}.
*
* For additional documentation, see Section 4.2 of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class GabowSCC {
private boolean[] marked; // marked[v] = has v been visited?
private int[] id; // id[v] = id of strong component containing v
private int[] preorder; // preorder[v] = preorder of v
private int pre; // preorder number counter
private int count; // number of strongly-connected components
private Stack stack1;
private Stack stack2;
/**
* Computes the strong components of the digraph G .
* @param G the digraph
*/
public GabowSCC(Digraph G) {
marked = new boolean[G.V()];
stack1 = new Stack();
stack2 = new Stack();
id = new int[G.V()];
preorder = new int[G.V()];
for (int v = 0; v < G.V(); v++) id[v] = -1;
for (int v = 0; v < G.V(); v++) {
if (!marked[v]) dfs(G, v);
}
// check that id[] gives strong components
assert check(G);
}
private void dfs(Digraph G, int v) {
marked[v] = true;
preorder[v] = pre++;
stack1.push(v);
stack2.push(v);
for (int w : G.adj(v)) {
if (!marked[w]) dfs(G, w);
else if (id[w] == -1) {
while (preorder[stack2.peek()] > preorder[w])
stack2.pop();
}
}
// found strong component containing v
if (stack2.peek() == v) {
stack2.pop();
int w;
do {
w = stack1.pop();
id[w] = count;
} while (w != v);
count++;
}
}
/**
* Returns the number of strong components.
* @return the number of strong components
*/
public int count() {
return count;
}
/**
* Are vertices v and w in the same strong component?
* @param v one vertex
* @param w the other vertex
* @return true if vertices v and w are in the same
* strong component, and false otherwise
*/
public boolean stronglyConnected(int v, int w) {
return id[v] == id[w];
}
/**
* Returns the component id of the strong component containing vertex v .
* @param v the vertex
* @return the component id of the strong component containing vertex v
*/
public int id(int v) {
return id[v];
}
// does the id[] array contain the strongly connected components?
private boolean check(Digraph G) {
TransitiveClosure tc = new TransitiveClosure(G);
for (int v = 0; v < G.V(); v++) {
for (int w = 0; w < G.V(); w++) {
if (stronglyConnected(v, w) != (tc.reachable(v, w) && tc.reachable(w, v)))
return false;
}
}
return true;
}
/**
* Unit tests the GabowSCC data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
Digraph G = new Digraph(in);
GabowSCC scc = new GabowSCC(G);
// number of connected components
int M = scc.count();
StdOut.println(M + " components");
// compute list of vertices in each strong component
Queue[] components = (Queue[]) new Queue[M];
for (int i = 0; i < M; i++) {
components[i] = new Queue();
}
for (int v = 0; v < G.V(); v++) {
components[scc.id(v)].enqueue(v);
}
// print results
for (int i = 0; i < M; i++) {
for (int v : components[i]) {
StdOut.print(v + " ");
}
StdOut.println();
}
}
}