185 lines
5.6 KiB
Java
185 lines
5.6 KiB
Java
|
|
||
|
|
||
|
import edu.princeton.cs.introcs.In;
|
||
|
import edu.princeton.cs.introcs.StdOut;
|
||
|
|
||
|
/*************************************************************************
|
||
|
* Compilation: javac BreadthFirstDirectedPaths.java
|
||
|
* Execution: java BreadthFirstDirectedPaths V E
|
||
|
* Dependencies: Digraph.java Queue.java Stack.java
|
||
|
*
|
||
|
* Run breadth first search on a digraph.
|
||
|
* Runs in O(E + V) time.
|
||
|
*
|
||
|
* % java BreadthFirstDirectedPaths tinyDG.txt 3
|
||
|
* 3 to 0 (2): 3->2->0
|
||
|
* 3 to 1 (3): 3->2->0->1
|
||
|
* 3 to 2 (1): 3->2
|
||
|
* 3 to 3 (0): 3
|
||
|
* 3 to 4 (2): 3->5->4
|
||
|
* 3 to 5 (1): 3->5
|
||
|
* 3 to 6 (-): not connected
|
||
|
* 3 to 7 (-): not connected
|
||
|
* 3 to 8 (-): not connected
|
||
|
* 3 to 9 (-): not connected
|
||
|
* 3 to 10 (-): not connected
|
||
|
* 3 to 11 (-): not connected
|
||
|
* 3 to 12 (-): not connected
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
/**
|
||
|
* The BreadthDirectedFirstPaths class represents a data type for finding
|
||
|
* shortest paths (number of edges) from a source vertex s
|
||
|
* (or set of source vertices) to every other vertex in the digraph.
|
||
|
*
|
||
|
* This implementation uses breadth-first search.
|
||
|
* The constructor takes time proportional to V + E ,
|
||
|
* where V is the number of vertices and E is the number of edges.
|
||
|
* It uses extra space (not including the digraph) proportional to V .
|
||
|
*
|
||
|
* For additional documentation, see <a href="/algs4/41graph">Section 4.1</a> of
|
||
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
||
|
*
|
||
|
* @author Robert Sedgewick
|
||
|
* @author Kevin Wayne
|
||
|
*/
|
||
|
public class BreadthFirstDirectedPaths {
|
||
|
private static final int INFINITY = Integer.MAX_VALUE;
|
||
|
private boolean[] marked; // marked[v] = is there an s->v path?
|
||
|
private int[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
|
||
|
private int[] distTo; // distTo[v] = length of shortest s->v path
|
||
|
|
||
|
/**
|
||
|
* Computes the shortest path from s and every other vertex in graph G .
|
||
|
* @param G the digraph
|
||
|
* @param s the source vertex
|
||
|
*/
|
||
|
public BreadthFirstDirectedPaths(Digraph G, int s) {
|
||
|
marked = new boolean[G.V()];
|
||
|
distTo = new int[G.V()];
|
||
|
edgeTo = new int[G.V()];
|
||
|
for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
|
||
|
bfs(G, s);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the shortest path from any one of the source vertices in sources
|
||
|
* to every other vertex in graph G .
|
||
|
* @param G the digraph
|
||
|
* @param sources the source vertices
|
||
|
*/
|
||
|
public BreadthFirstDirectedPaths(Digraph G, Iterable<Integer> sources) {
|
||
|
marked = new boolean[G.V()];
|
||
|
distTo = new int[G.V()];
|
||
|
edgeTo = new int[G.V()];
|
||
|
for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
|
||
|
bfs(G, sources);
|
||
|
}
|
||
|
|
||
|
// BFS from single source
|
||
|
private void bfs(Digraph G, int s) {
|
||
|
Queue<Integer> q = new Queue<Integer>();
|
||
|
marked[s] = true;
|
||
|
distTo[s] = 0;
|
||
|
q.enqueue(s);
|
||
|
while (!q.isEmpty()) {
|
||
|
int v = q.dequeue();
|
||
|
for (int w : G.adj(v)) {
|
||
|
if (!marked[w]) {
|
||
|
edgeTo[w] = v;
|
||
|
distTo[w] = distTo[v] + 1;
|
||
|
marked[w] = true;
|
||
|
q.enqueue(w);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// BFS from multiple sources
|
||
|
private void bfs(Digraph G, Iterable<Integer> sources) {
|
||
|
Queue<Integer> q = new Queue<Integer>();
|
||
|
for (int s : sources) {
|
||
|
marked[s] = true;
|
||
|
distTo[s] = 0;
|
||
|
q.enqueue(s);
|
||
|
}
|
||
|
while (!q.isEmpty()) {
|
||
|
int v = q.dequeue();
|
||
|
for (int w : G.adj(v)) {
|
||
|
if (!marked[w]) {
|
||
|
edgeTo[w] = v;
|
||
|
distTo[w] = distTo[v] + 1;
|
||
|
marked[w] = true;
|
||
|
q.enqueue(w);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Is there a directed path from the source s (or sources) to vertex v ?
|
||
|
* @param v the vertex
|
||
|
* @return true if there is a directed path, false otherwise
|
||
|
*/
|
||
|
public boolean hasPathTo(int v) {
|
||
|
return marked[v];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the number of edges in a shortest path from the source s
|
||
|
* (or sources) to vertex v ?
|
||
|
* @param v the vertex
|
||
|
* @return the number of edges in a shortest path
|
||
|
*/
|
||
|
public int distTo(int v) {
|
||
|
return distTo[v];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a shortest path from s (or sources) to v , or
|
||
|
* null if no such path.
|
||
|
* @param v the vertex
|
||
|
* @return the sequence of vertices on a shortest path, as an Iterable
|
||
|
*/
|
||
|
public Iterable<Integer> pathTo(int v) {
|
||
|
if (!hasPathTo(v)) return null;
|
||
|
Stack<Integer> path = new Stack<Integer>();
|
||
|
int x;
|
||
|
for (x = v; distTo[x] != 0; x = edgeTo[x])
|
||
|
path.push(x);
|
||
|
path.push(x);
|
||
|
return path;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Unit tests the BreadthFirstDirectedPaths data type.
|
||
|
*/
|
||
|
public static void main(String[] args) {
|
||
|
In in = new In(args[0]);
|
||
|
Digraph G = new Digraph(in);
|
||
|
// StdOut.println(G);
|
||
|
|
||
|
int s = Integer.parseInt(args[1]);
|
||
|
BreadthFirstDirectedPaths bfs = new BreadthFirstDirectedPaths(G, s);
|
||
|
|
||
|
for (int v = 0; v < G.V(); v++) {
|
||
|
if (bfs.hasPathTo(v)) {
|
||
|
StdOut.printf("%d to %d (%d): ", s, v, bfs.distTo(v));
|
||
|
for (int x : bfs.pathTo(v)) {
|
||
|
if (x == s) StdOut.print(x);
|
||
|
else StdOut.print("->" + x);
|
||
|
}
|
||
|
StdOut.println();
|
||
|
}
|
||
|
|
||
|
else {
|
||
|
StdOut.printf("%d to %d (-): not connected\n", s, v);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|