import edu.princeton.cs.introcs.In; import edu.princeton.cs.introcs.StdOut; /************************************************************************* * Compilation: javac BreadthFirstDirectedPaths.java * Execution: java BreadthFirstDirectedPaths V E * Dependencies: Digraph.java Queue.java Stack.java * * Run breadth first search on a digraph. * Runs in O(E + V) time. * * % java BreadthFirstDirectedPaths tinyDG.txt 3 * 3 to 0 (2): 3->2->0 * 3 to 1 (3): 3->2->0->1 * 3 to 2 (1): 3->2 * 3 to 3 (0): 3 * 3 to 4 (2): 3->5->4 * 3 to 5 (1): 3->5 * 3 to 6 (-): not connected * 3 to 7 (-): not connected * 3 to 8 (-): not connected * 3 to 9 (-): not connected * 3 to 10 (-): not connected * 3 to 11 (-): not connected * 3 to 12 (-): not connected * *************************************************************************/ /** * The BreadthDirectedFirstPaths class represents a data type for finding * shortest paths (number of edges) from a source vertex s * (or set of source vertices) to every other vertex in the digraph. * * This implementation uses breadth-first search. * The constructor takes time proportional to V + E , * where V is the number of vertices and E is the number of edges. * It uses extra space (not including the digraph) proportional to V . * * For additional documentation, see Section 4.1 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class BreadthFirstDirectedPaths { private static final int INFINITY = Integer.MAX_VALUE; private boolean[] marked; // marked[v] = is there an s->v path? private int[] edgeTo; // edgeTo[v] = last edge on shortest s->v path private int[] distTo; // distTo[v] = length of shortest s->v path /** * Computes the shortest path from s and every other vertex in graph G . * @param G the digraph * @param s the source vertex */ public BreadthFirstDirectedPaths(Digraph G, int s) { marked = new boolean[G.V()]; distTo = new int[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY; bfs(G, s); } /** * Computes the shortest path from any one of the source vertices in sources * to every other vertex in graph G . * @param G the digraph * @param sources the source vertices */ public BreadthFirstDirectedPaths(Digraph G, Iterable sources) { marked = new boolean[G.V()]; distTo = new int[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY; bfs(G, sources); } // BFS from single source private void bfs(Digraph G, int s) { Queue q = new Queue(); marked[s] = true; distTo[s] = 0; q.enqueue(s); while (!q.isEmpty()) { int v = q.dequeue(); for (int w : G.adj(v)) { if (!marked[w]) { edgeTo[w] = v; distTo[w] = distTo[v] + 1; marked[w] = true; q.enqueue(w); } } } } // BFS from multiple sources private void bfs(Digraph G, Iterable sources) { Queue q = new Queue(); for (int s : sources) { marked[s] = true; distTo[s] = 0; q.enqueue(s); } while (!q.isEmpty()) { int v = q.dequeue(); for (int w : G.adj(v)) { if (!marked[w]) { edgeTo[w] = v; distTo[w] = distTo[v] + 1; marked[w] = true; q.enqueue(w); } } } } /** * Is there a directed path from the source s (or sources) to vertex v ? * @param v the vertex * @return true if there is a directed path, false otherwise */ public boolean hasPathTo(int v) { return marked[v]; } /** * Returns the number of edges in a shortest path from the source s * (or sources) to vertex v ? * @param v the vertex * @return the number of edges in a shortest path */ public int distTo(int v) { return distTo[v]; } /** * Returns a shortest path from s (or sources) to v , or * null if no such path. * @param v the vertex * @return the sequence of vertices on a shortest path, as an Iterable */ public Iterable pathTo(int v) { if (!hasPathTo(v)) return null; Stack path = new Stack(); int x; for (x = v; distTo[x] != 0; x = edgeTo[x]) path.push(x); path.push(x); return path; } /** * Unit tests the BreadthFirstDirectedPaths data type. */ public static void main(String[] args) { In in = new In(args[0]); Digraph G = new Digraph(in); // StdOut.println(G); int s = Integer.parseInt(args[1]); BreadthFirstDirectedPaths bfs = new BreadthFirstDirectedPaths(G, s); for (int v = 0; v < G.V(); v++) { if (bfs.hasPathTo(v)) { StdOut.printf("%d to %d (%d): ", s, v, bfs.distTo(v)); for (int x : bfs.pathTo(v)) { if (x == s) StdOut.print(x); else StdOut.print("->" + x); } StdOut.println(); } else { StdOut.printf("%d to %d (-): not connected\n", s, v); } } } }