196 lines
4.8 KiB
JavaScript
196 lines
4.8 KiB
JavaScript
/**
|
|
* A binary heap is a complete binary tree which
|
|
* satisfies the heap ordering property.
|
|
*
|
|
* @example
|
|
* var Heap = require('path-to-algorithms/src/data-structures/heap').Heap;
|
|
*
|
|
* var heap = new Heap(function(a, b) {
|
|
* return a.birthyear - b.birthyear;
|
|
* });
|
|
*
|
|
* heap.add({
|
|
* name: 'John',
|
|
* birthyear: 1981
|
|
* });
|
|
* heap.add({
|
|
* name: 'Pavlo',
|
|
* birthyear: 2000
|
|
* });
|
|
* heap.add({
|
|
* name: 'Garry',
|
|
* birthyear: 1989
|
|
* });
|
|
* heap.add({
|
|
* name: 'Derek',
|
|
* birthyear: 1990
|
|
* });
|
|
* heap.add({
|
|
* name: 'Ivan',
|
|
* birthyear: 1966
|
|
* });
|
|
*
|
|
* console.log(heap.extract()); // { name: 'Pavlo', birthyear: 2000 }
|
|
* console.log(heap.extract()); // { name: 'Derek', birthyear: 1990 }
|
|
* console.log(heap.extract()); // { name: 'Garry', birthyear: 1989 }
|
|
* console.log(heap.extract()); // { name: 'John', birthyear: 1981 }
|
|
* console.log(heap.extract()); // { name: 'Ivan', birthyear: 1966 }
|
|
*
|
|
* @module data-structures/heap
|
|
*/
|
|
(function (exports) {
|
|
|
|
'use strict';
|
|
|
|
/**
|
|
* Minimum heap constructor.
|
|
*
|
|
* @public
|
|
* @constructor
|
|
* @param {Function} cmp Function used for comparison between the elements.
|
|
*/
|
|
exports.Heap = function (cmp) {
|
|
this._heap = [];
|
|
if (typeof cmp === 'function') {
|
|
this._cmp = cmp;
|
|
} else {
|
|
this._cmp = function (a, b) {
|
|
return a - b;
|
|
};
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Exchange indexes with start index given as argument
|
|
* to turn the tree into a valid heap. On a single call
|
|
* this method maintains only a single "branch" of the heap.<br><br>
|
|
*
|
|
* Time complexity: O(log N).
|
|
*
|
|
* @private
|
|
* @param {Number} index The parent.
|
|
*/
|
|
exports.Heap.prototype._heapify = function (index) {
|
|
var extr = index;
|
|
var left = 2 * index + 1;
|
|
var right = 2 * index + 2;
|
|
var temp;
|
|
|
|
if (left < this._heap.length &&
|
|
this._cmp(this._heap[left], this._heap[index]) > 0) {
|
|
extr = left;
|
|
}
|
|
|
|
if (right < this._heap.length &&
|
|
this._cmp(this._heap[right], this._heap[index]) > 0 &&
|
|
this._cmp(this._heap[right], this._heap[left]) > 0) {
|
|
extr = right;
|
|
}
|
|
|
|
if (index !== extr) {
|
|
temp = this._heap[index];
|
|
this._heap[index] = this._heap[extr];
|
|
this._heap[extr] = temp;
|
|
this._heapify(extr);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Changes the key.<br><br>
|
|
* Complexity: O(log N).
|
|
*
|
|
* @public
|
|
* @param {Number} index Index of the value which should be changed.
|
|
* @param {Number|Object} value New value according to the index.
|
|
* @return {Number} New position of the element.
|
|
*/
|
|
exports.Heap.prototype.changeKey = function (index, value) {
|
|
this._heap[index] = value;
|
|
var elem = this._heap[index];
|
|
var parent = Math.floor(index / 2);
|
|
var temp;
|
|
if (elem !== undefined) {
|
|
while (parent >= 0 && this._cmp(elem, this._heap[parent]) > 0) {
|
|
temp = this._heap[parent];
|
|
this._heap[parent] = elem;
|
|
this._heap[index] = temp;
|
|
index = parent;
|
|
parent = Math.floor(parent / 2);
|
|
}
|
|
this._heapify(index);
|
|
}
|
|
return parent;
|
|
};
|
|
|
|
/**
|
|
* Updates a given node. This operation is useful
|
|
* in algorithms like Dijkstra, A* where we need
|
|
* to decrease/increase value of the given node.
|
|
*
|
|
* @public
|
|
* @param {Number|Object} node Node which should be updated.
|
|
*/
|
|
exports.Heap.prototype.update = function (node) {
|
|
var idx = this._heap.indexOf(node);
|
|
if (idx >= 0) {
|
|
this.changeKey(idx, node);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Adds new element to the heap.<br><br>
|
|
* Complexity: O(log N).
|
|
*
|
|
* @public
|
|
* @param {Number|Object} value Value which will be inserted.
|
|
* @return {Number} Index of the inserted value.
|
|
*/
|
|
exports.Heap.prototype.add = function (value) {
|
|
this._heap.push(value);
|
|
return this.changeKey(this._heap.length - 1, value);
|
|
};
|
|
|
|
/**
|
|
* Returns current value which is on the top of the heap.<br><br>
|
|
* Complexity: O(1).
|
|
*
|
|
* @public
|
|
* @return {Number|Object} Current top value.
|
|
*/
|
|
exports.Heap.prototype.top = function () {
|
|
return this._heap[0];
|
|
};
|
|
|
|
/**
|
|
* Removes and returns the current extremum value
|
|
* which is on the top of the heap.<br><br>
|
|
* Complexity: O(log N).
|
|
*
|
|
* @public
|
|
* @returns {Number|Object} The extremum value.
|
|
*/
|
|
exports.Heap.prototype.extract = function () {
|
|
if (!this._heap.length) {
|
|
throw 'The heap is already empty!';
|
|
}
|
|
var extr = this._heap.shift();
|
|
this._heapify(0);
|
|
return extr;
|
|
};
|
|
|
|
exports.Heap.prototype.getCollection = function () {
|
|
return this._heap;
|
|
};
|
|
|
|
/**
|
|
* Checks or heap is empty.
|
|
*
|
|
* @public
|
|
* @returns {Boolean} Returns true if heap is empty.
|
|
*/
|
|
exports.Heap.prototype.isEmpty = function () {
|
|
return !this._heap.length;
|
|
};
|
|
|
|
})(typeof window === 'undefined' ? module.exports : window);
|