116 lines
4.0 KiB
Java
116 lines
4.0 KiB
Java
/*
|
|
This is the java implementation of multiplication of two matrices consisting of complex numbers. Complex numbers are of the form a+bi.
|
|
*/
|
|
|
|
//This is a sample program to find the multiplication of two matrices consisting of complex numbers of any dimension
|
|
import java.util.Scanner;
|
|
|
|
public class Complex_Multiplication_Matrix
|
|
{
|
|
private double real=0.0, img=0.0;
|
|
public Complex_Multiplication_Matrix(double real, double img)
|
|
{
|
|
this.real = real;
|
|
this.img = img;
|
|
}
|
|
public Complex_Multiplication_Matrix()
|
|
{
|
|
this.real = 0;
|
|
this.img = 0;
|
|
}
|
|
|
|
public Complex_Multiplication_Matrix complex_Form(double re, double im)
|
|
{
|
|
Complex_Multiplication_Matrix res = new Complex_Multiplication_Matrix();
|
|
res.real = re;
|
|
res.img = im;
|
|
return res;
|
|
}
|
|
public Complex_Multiplication_Matrix multiplication(Complex_Multiplication_Matrix C2)
|
|
{
|
|
Complex_Multiplication_Matrix Res = new Complex_Multiplication_Matrix();
|
|
Res.real = (this.real * C2.real) - (this.img * C2.img);
|
|
Res.img = (this.real * C2.img) + (this.img * C2.real);
|
|
return Res;
|
|
}
|
|
public Complex_Multiplication_Matrix addtion(Complex_Multiplication_Matrix C2)
|
|
{
|
|
Complex_Multiplication_Matrix Res = new Complex_Multiplication_Matrix();
|
|
this.real += C2.real;
|
|
this.img += C2.img;
|
|
Res.real = this.real;
|
|
Res.img = this.img;
|
|
return Res;
|
|
}
|
|
public Complex_Multiplication_Matrix[][] matrix_multiplication(Complex_Multiplication_Matrix[][] a, Complex_Multiplication_Matrix[][] b, Complex_Multiplication_Matrix[][] res, int n)
|
|
{
|
|
for (int i = 0; i < n; i++)
|
|
for (int j = 0; j < n; j++)
|
|
for (int k = 0; k < n; k++)
|
|
res[i][j] = res[i][j].addtion(a[i][k].multiplication(b[k][j]));
|
|
return res;
|
|
}
|
|
public static void main(String args[])
|
|
{
|
|
Scanner sc = new Scanner(System.in);
|
|
System.out.println("Enter the dimension of the square matrix: ");
|
|
int n = sc.nextInt();
|
|
double re,im;
|
|
Complex_Multiplication_Matrix[][] a = new Complex_Multiplication_Matrix[n][n];
|
|
Complex_Multiplication_Matrix[][] b = new Complex_Multiplication_Matrix[n][n];
|
|
Complex_Multiplication_Matrix[][] res = new Complex_Multiplication_Matrix[n][n];
|
|
Complex_Multiplication_Matrix C = new Complex_Multiplication_Matrix();
|
|
System.out.println("Enter the complex elements of 1st matrix: ");
|
|
for(int i=0; i<n; i++)
|
|
{
|
|
for(int j=0; j<n; j++)
|
|
{
|
|
re = sc.nextDouble();
|
|
im = sc.nextDouble();
|
|
a[i][j] = C.complex_Form(re, im);
|
|
}
|
|
}
|
|
System.out.println("Enter the complex elements of matrix: ");
|
|
for(int i=0; i<n; i++)
|
|
{
|
|
for(int j=0; j<n; j++)
|
|
{
|
|
re = sc.nextDouble();
|
|
im = sc.nextDouble();
|
|
b[i][j] = C.complex_Form(re, im);
|
|
}
|
|
}
|
|
for(int i=0; i<n; i++)
|
|
{
|
|
for(int j=0; j<n; j++)
|
|
{
|
|
re = 0.0;
|
|
im = 0.0;
|
|
res[i][j] = C.complex_Form(re, im);
|
|
}
|
|
}
|
|
res = C.matrix_multiplication(a, b, res, n);
|
|
System.out.println("The Multiplication is:");
|
|
for(int i=0; i<n; i++)
|
|
{
|
|
for(int j=0; j<n; j++)
|
|
System.out.print(res[i][j].real+"+"+res[i][j].img+"i ");
|
|
System.out.println();
|
|
}
|
|
sc.close();
|
|
}
|
|
}
|
|
|
|
/*
|
|
|
|
Enter the dimension of the square matrix:
|
|
2
|
|
Enter the complex elements of matrix:
|
|
1 2 1 2
|
|
1 2 1 2
|
|
Enter the complex elements of matrix:
|
|
1 2 1 2
|
|
1 2 1 2
|
|
The Multiplication is:
|
|
-6.0+8.0i -6.0+8.0i
|
|
-6.0+8.0i -6.0+8.0i |