52 lines
1.3 KiB
Java
52 lines
1.3 KiB
Java
/*
|
||
This is a Java Program to implement Euclid’s GCD Algorithm. This is a program to find GCD (Greatest Common Divisor) of two numbers using Euclid’s Algorithm.
|
||
Algorithm is as follows :
|
||
|
||
function gcd(a, b)
|
||
if b = 0
|
||
return a
|
||
else
|
||
return gcd(b, a mod b)
|
||
*/
|
||
|
||
/**
|
||
** Java Program to Implement Euclid GCD Algorithm
|
||
**/
|
||
|
||
import java.util.Scanner;
|
||
|
||
/** Class EuclidGcd **/
|
||
public class EuclidGcd
|
||
{
|
||
/** Function to calculate gcd **/
|
||
public long gcd(long p, long q)
|
||
{
|
||
if (p % q == 0)
|
||
return q;
|
||
return gcd(q, p % q);
|
||
}
|
||
/** Main function **/
|
||
public static void main (String[] args)
|
||
{
|
||
Scanner scan = new Scanner(System.in);
|
||
System.out.println("Euclid GCD Algorithm Test\n");
|
||
/** Make an object of EuclidGcd class **/
|
||
EuclidGcd eg = new EuclidGcd();
|
||
/** Accept two integers **/
|
||
System.out.println("Enter two integer numbers\n");
|
||
long n1 = scan.nextLong();
|
||
long n2 = scan.nextLong();
|
||
/** Call function gcd of class EuclidGcd **/
|
||
long gcd = eg.gcd(n1, n2);
|
||
System.out.println("\nGCD of "+ n1 +" and "+ n2 +" = "+ gcd);
|
||
}
|
||
}
|
||
|
||
/*
|
||
|
||
Enter two integer numbers
|
||
|
||
257184 800128
|
||
|
||
GCD of 257184 and 800128 = 28576
|