programming-examples/java/Numerical_Problems/Java Program to Compute Discrete Fourier Transform Using Naive Approach.java
2019-11-15 12:59:38 +01:00

78 lines
2.9 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
This is the java implementation of Naive DFT approach over function. Formula for calculating the coefficient is X(k) = Sum(x(n)*cos(2*PI*k*n/N) iSum(x(n)*sin(2*PI*k*n/N)) over 0 to N-1. This approach tries to many transforms using different values of k from 0 to N-1.
*/
//This is a java program to perform the DFT using naive approach
import java.util.Scanner;
public class DFT_Naive_Approach
{
double real, img;
public DFT_Naive_Approach()
{
this.real = 0.0;
this.img = 0.0;
}
public static void main(String args[])
{
int N = 10;
Scanner sc = new Scanner(System.in);
System.out.println("Disd=crete Fourier Transform using naive method");
System.out.println("Enter the coefficient of simple linear funtion:");
System.out.println("ax + by = c");
double a = sc.nextDouble();
double b = sc.nextDouble();
double c = sc.nextDouble();
double []function = new double[N];
for(int i=0; i<N; i++)
{
function[i] = (((a*(double)i) + (b*(double)i)) - c);
}
System.out.println("Enter the max K value: ");
int k = sc.nextInt();
DFT_Naive_Approach []dft_val = new DFT_Naive_Approach[k];
System.out.println("The coefficients are: ");
for(int j=0; j<k; j++)
{
dft_val[j] = new DFT_Naive_Approach();
for(int i=0; i<N; i++)
{
dft_val[j].real += function[i] * Math.cos((2 * i * j * Math.PI) / N);;
dft_val[j].img += function[i] * Math.sin((2 * i * j * Math.PI) / N);;
}
System.out.println("("+dft_val[j].real + ") - " + "("+dft_val[j].img + " i)");
}
sc.close();
}
}
/*
Discrete Fourier Transform using naive method
Enter the coefficient of simple linear funtion:
ax + by = c
1 2 3
Enter the max K value:
20
The coefficients are:
(105.0) - (0.0 i)
(-15.00000000000001) - (-46.1652530576288 i)
(-15.00000000000001) - (-20.6457288070676 i)
(-15.000000000000005) - (-10.898137920080407 i)
(-15.000000000000004) - (-4.873795443493586 i)
(-15.0) - (1.4695761589768243E-14 i)
(-14.999999999999996) - (4.873795443493611 i)
(-15.000000000000103) - (10.898137920080355 i)
(-14.999999999999968) - (20.64572880706762 i)
(-14.999999999999922) - (46.16525305762871 i)
(105.0) - (-1.7634913907721884E-13 i)
(-15.00000000000012) - (-46.16525305762882 i)
(-15.000000000000053) - (-20.645728807067577 i)
(-14.999999999999911) - (-10.898137920080416 i)
(-15.000000000000037) - (-4.87379544349373 i)
(-15.0) - (1.0803613098771371E-13 i)
(-14.999999999999984) - (4.873795443493645 i)
(-14.99999999999996) - (10.89813792008029 i)
(-14.999999999999677) - (20.645728807067492 i)
(-14.999999999999769) - (46.16525305762875 i)