programming-examples/java/Numerical_Problems/Java Program to Compute DFT Coefficients Directly.java
2019-11-15 12:59:38 +01:00

63 lines
2.1 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
This is the java implementation of calculating coefficients of the given function performing the Discrete-Fourier Transform. Formula for calculating the coefficient is X(k) = Sum(x(n)*cos(2*PI*k*n/N) iSum(x(n)*sin(2*PI*k*n/N)) over 0 to N-1
*/
//This is a sample program to calculate a DFT Coefficients using the formula
import java.util.Scanner;
public class DFT_Coefficient
{
double real, img;
public DFT_Coefficient()
{
this.real = 0.0;
this.img = 0.0;
}
public static void main(String args[])
{
int N = 10;
Scanner sc = new Scanner(System.in);
System.out.println("Calculation DFT Coefficients");
System.out.println("Enter the coefficient of simple linear funtion:");
System.out.println("ax + by = c");
double a = sc.nextDouble();
double b = sc.nextDouble();
double c = sc.nextDouble();
double []function = new double[N];
for(int i=0; i<N; i++)
{
function[i] = (((a*(double)i) + (b*(double)i)) - c);
//System.out.print( " "+function[i] + " ");
}
System.out.println("Enter the max K value: ");
int k = sc.nextInt();
double []cos = new double[N];
double []sin = new double[N];
for(int i=0; i<N; i++)
{
cos[i] = Math.cos((2 * i * k * Math.PI) / N);
sin[i] = Math.sin((2 * i * k * Math.PI) / N);
}
DFT_Coefficient dft_val = new DFT_Coefficient();
System.out.println("The coefficients are: ");
for(int i=0; i<N; i++)
{
dft_val.real += function[i] * cos[i];
dft_val.img += function[i] * sin[i];
}
System.out.println("("+dft_val.real + ") - " + "("+dft_val.img + " i)");
sc.close();
}
}
/*
Calculation DFT Coefficients
Enter the coefficient of simple linear funtion:
ax + by = c
1 2 3
Enter the max K value:
2
The coefficients are:
(-15.00000000000001) - (-20.6457288070676 i)