programming-examples/java/Hard_Graph_Problems/Java Program to Check Whether Graph is DAG.java
2019-11-15 12:59:38 +01:00

202 lines
6.3 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This is a java program to check whether graph is DAG. In mathematics and computer science, a directed acyclic graph (DAG Listeni/dæg/), is a directed graph with no directed cycles. That is, it is formed by a collection of vertices and directed edges, each edge connecting one vertex to another, such that there is no way to start at some vertex v and follow a sequence of edges that eventually loops back to v again.*/
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
class GraphLinkedList
{
private Map<Integer, List<Integer>> adjacencyList;
public GraphLinkedList(int v)
{
adjacencyList = new HashMap<Integer, List<Integer>>();
for (int i = 1; i <= v; i++)
adjacencyList.put(i, new LinkedList<Integer>());
}
public void setEdge(int from, int to)
{
if (to > adjacencyList.size() || from > adjacencyList.size())
System.out.println("The vertices does not exists");
/*
* List<Integer> sls = adjacencyList.get(to);
* sls.add(from);
*/
List<Integer> dls = adjacencyList.get(from);
dls.add(to);
}
public List<Integer> getEdge(int to)
{
if (to > adjacencyList.size())
{
System.out.println("The vertices does not exists");
return null;
}
return adjacencyList.get(to);
}
public boolean checkDAG()
{
Integer count = 0;
Iterator<Integer> iteratorI = this.adjacencyList.keySet().iterator();
Integer size = this.adjacencyList.size() - 1;
while (iteratorI.hasNext())
{
Integer i = iteratorI.next();
List<Integer> adjList = this.adjacencyList.get(i);
if (count == size)
{
return true;
}
if (adjList.size() == 0)
{
count++;
System.out.println("Target Node - " + i);
Iterator<Integer> iteratorJ = this.adjacencyList.keySet()
.iterator();
while (iteratorJ.hasNext())
{
Integer j = iteratorJ.next();
List<Integer> li = this.adjacencyList.get(j);
if (li.contains(i))
{
li.remove(i);
System.out.println("Deleting edge between target node "
+ i + " - " + j + " ");
}
}
this.adjacencyList.remove(i);
iteratorI = this.adjacencyList.keySet().iterator();
}
}
return false;
}
public void printGraph()
{
System.out.println("The Graph is: ");
for (int i = 1; i <= this.adjacencyList.size(); i++)
{
List<Integer> edgeList = this.getEdge(i);
if (edgeList.size() != 0)
{
System.out.print(i);
for (int j = 0; j < edgeList.size(); j++)
{
System.out.print(" -> " + edgeList.get(j));
}
System.out.println();
}
}
}
}
public class CheckDAG
{
public static void main(String args[])
{
int v, e, count = 1, to, from;
Scanner sc = new Scanner(System.in);
GraphLinkedList glist;
try
{
System.out.println("Enter the number of vertices: ");
v = sc.nextInt();
System.out.println("Enter the number of edges: ");
e = sc.nextInt();
glist = new GraphLinkedList(v);
System.out.println("Enter the edges in the graph : <from> <to>");
while (count <= e)
{
to = sc.nextInt();
from = sc.nextInt();
glist.setEdge(to, from);
count++;
}
glist.printGraph();
System.out
.println("--Processing graph to check whether it is DAG--");
if (glist.checkDAG())
{
System.out
.println("Result: \nGiven graph is DAG (Directed Acyclic Graph).");
}
else
{
System.out
.println("Result: \nGiven graph is not DAG (Directed Acyclic Graph).");
}
}
catch (Exception E)
{
System.out
.println("You are trying to access empty adjacency list of a node.");
}
sc.close();
}
}
/*
Enter the number of vertices:
6
Enter the number of edges:
7
Enter the edges in the graph : <from> <to>
1 2
2 3
2 4
4 5
4 6
5 6
6 3
The Graph is:
1 -> 2
2 -> 3 -> 4
4 -> 5 -> 6
5 -> 6
6 -> 3
--Processing graph to check whether it is DAG--
Target Node - 3
Deleting edge between target node 3 - 2
Deleting edge between target node 3 - 6
Target Node - 6
Deleting edge between target node 6 - 4
Deleting edge between target node 6 - 5
Target Node - 5
Deleting edge between target node 5 - 4
Target Node - 4
Deleting edge between target node 4 - 2
Target Node - 2
Deleting edge between target node 2 - 1
Result:
Given graph is DAG (Directed Acyclic Graph).
Enter the number of vertices:
6
Enter the number of edges:
7
Enter the edges in the graph : <from> <to>
1 2
2 3
2 4
4 5
5 6
6 4
6 3
The Graph is:
1 -> 2
2 -> 3 -> 4
4 -> 5
5 -> 6
6 -> 4 -> 3
--Processing graph to check whether it is DAG--
Target Node - 3
Deleting edge between target node 3 - 2
Deleting edge between target node 3 - 6
Result:
Given graph is not DAG (Directed Acyclic Graph).