programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Gabow Algorithm.java
2019-11-15 12:59:38 +01:00

129 lines
3.4 KiB
Java

/*This is a Java Program to Implement Gabow Algorithm. Gabow algorithm is used for finding all strongly connected components in a graph.*/
/**
* Java Program to Implement Gabow Algorithm
**/
import java.util.*;
/** class Gabow **/
class Gabow
{
/** number of vertices **/
private int V;
/** preorder number counter **/
private int preCount;
private int[] preorder;
/** to check if v is visited **/
private boolean[] visited;
/** check strong componenet containing v **/
private boolean[] chk;
/** to store given graph **/
private List<Integer>[] graph;
/** to store all scc **/
private List<List<Integer>> sccComp;
private Stack<Integer> stack1;
private Stack<Integer> stack2;
/** function to get all strongly connected components **/
public List<List<Integer>> getSCComponents(List<Integer>[] graph)
{
V = graph.length;
this.graph = graph;
preorder = new int[V];
chk = new boolean[V];
visited = new boolean[V];
stack1 = new Stack<Integer>();
stack2 = new Stack<Integer>();
sccComp = new ArrayList<>();
for (int v = 0; v < V; v++)
if (!visited[v])
dfs(v);
return sccComp;
}
/** function dfs **/
public void dfs(int v)
{
preorder[v] = preCount++;
visited[v] = true;
stack1.push(v);
stack2.push(v);
for (int w : graph[v])
{
if (!visited[w])
dfs(w);
else if (!chk[w])
while (preorder[stack2.peek()] > preorder[w])
stack2.pop();
}
if (stack2.peek() == v)
{
stack2.pop();
List<Integer> component = new ArrayList<Integer>();
int w;
do
{
w = stack1.pop();
component.add(w);
chk[w] = true;
}
while (w != v);
sccComp.add(component);
}
}
/** main **/
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Gabow algorithm Test\n");
System.out.println("Enter number of Vertices");
/** number of vertices **/
int V = scan.nextInt();
/** make graph **/
List<Integer>[] g = new List[V];
for (int i = 0; i < V; i++)
g[i] = new ArrayList<Integer>();
/** accpet all edges **/
System.out.println("\nEnter number of edges");
int E = scan.nextInt();
/** all edges **/
System.out.println("Enter "+ E +" x, y coordinates");
for (int i = 0; i < E; i++)
{
int x = scan.nextInt();
int y = scan.nextInt();
g[x].add(y);
}
Gabow gab = new Gabow();
System.out.println("\nSCC : ");
/** print all strongly connected components **/
List<List<Integer>> scComponents = gab.getSCComponents(g);
System.out.println(scComponents);
}
}
/*
Enter number of Vertices
8
Enter number of edges
14
Enter 14 x, y coordinates
0 1
1 2
2 3
3 2
3 7
7 3
2 6
7 6
5 6
6 5
1 5
4 5
4 0
1 4
SCC :
[[5, 6], [7, 3, 2], [4, 1, 0]]