programming-examples/java/Graph_Problems_Algorithms/Java Program to Create a Minimal Set of All Edges Whose Addition will Convert it to a Strongly Connected DAG.java
2019-11-15 12:59:38 +01:00

218 lines
7.0 KiB
Java

/*This is a java program to find the edges other than feedback arc set so that all the edges contribute to directed acyclic graph.*/
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
class Graph
{
private Map<Integer, List<Integer>> adjacencyList;
public Graph(int v)
{
adjacencyList = new HashMap<Integer, List<Integer>>();
for (int i = 1; i <= v; i++)
adjacencyList.put(i, new LinkedList<Integer>());
}
public void setEdge(int from, int to)
{
if (to > adjacencyList.size() || from > adjacencyList.size())
System.out.println("The vertices does not exists");
/*
* List<Integer> sls = adjacencyList.get(to);
* sls.add(from);
*/
List<Integer> dls = adjacencyList.get(from);
dls.add(to);
}
public List<Integer> getEdge(int to)
{
/*
* if (to > adjacencyList.size())
* {
* System.out.println("The vertices does not exists");
* return null;
* }
*/
return adjacencyList.get(to);
}
public Graph checkDAG()
{
Integer count = 0;
Iterator<Integer> iteratorI = this.adjacencyList.keySet().iterator();
Integer size = this.adjacencyList.size() - 1;
System.out.println("Minimal set of edges: ");
while (iteratorI.hasNext())
{
Integer i = iteratorI.next();
List<Integer> adjList = this.adjacencyList.get(i);
if (count == size)
{
return this;
}
if (adjList.size() == 0)
{
count++;
Iterator<Integer> iteratorJ = this.adjacencyList.keySet()
.iterator();
while (iteratorJ.hasNext())
{
Integer j = iteratorJ.next();
List<Integer> li = this.adjacencyList.get(j);
if (li.contains(i))
{
li.remove(i);
System.out.println(i + " -> " + j);
}
}
this.adjacencyList.remove(i);
iteratorI = this.adjacencyList.keySet().iterator();
}
}
return this;
}
public Map<Integer, List<Integer>> getFeedbackArcSet(int v)
{
int[] visited = new int[v + 1];
Iterator<Integer> iterator = this.adjacencyList.keySet().iterator();
Map<Integer, List<Integer>> l = new HashMap<Integer, List<Integer>>();
while (iterator.hasNext())
{
Integer i = iterator.next();
List<Integer> list = this.adjacencyList.get(i);
visited[i] = 1;
if (list.size() != 0)
{
for (int j = 0; j < list.size(); j++)
{
if (visited[list.get(j)] == 1)
{
l.put(i, new LinkedList<Integer>());
l.get(i).add(j);
}
else
{
visited[list.get(j)] = 1;
}
}
}
}
return l;
}
public void printAllEdges(Graph copyG, int v)
{
Map<Integer, List<Integer>> edges = this.getFeedbackArcSet(v);
Iterator<Integer> iterator = copyG.adjacencyList.keySet().iterator();
while (iterator.hasNext())
{
Integer i = iterator.next();
List<Integer> edgeList = this.getEdge(i);
if (edgeList.size() != 0)
{
for (int j = 0; j < edgeList.size(); j++)
{
if (edges.containsKey(i) && edges.get(i).contains(j))
continue;
else
{
System.out.print(i + " -> " + edgeList.get(j));
}
}
System.out.println();
}
}
}
public void printGraph()
{
System.out.println("The Graph is: ");
Iterator<Integer> iterator = this.adjacencyList.keySet().iterator();
while (iterator.hasNext())
{
Integer i = iterator.next();
List<Integer> edgeList = this.getEdge(i);
if (edgeList.size() != 0)
{
System.out.print(i);
for (int j = 0; j < edgeList.size(); j++)
{
System.out.print(" -> " + edgeList.get(j));
}
System.out.println();
}
}
}
}
public class MinimalSetofEdgesforDAG
{
public static void main(String args[])
{
int v, e, count = 1, to, from;
Scanner sc = new Scanner(System.in);
Graph glist;
try
{
System.out.println("Enter the number of vertices: ");
v = sc.nextInt();
System.out.println("Enter the number of edges: ");
e = sc.nextInt();
glist = new Graph(v);
System.out.println("Enter the edges in the graph : <from> <to>");
while (count <= e)
{
to = sc.nextInt();
from = sc.nextInt();
glist.setEdge(to, from);
count++;
}
Graph copyofGlist = new Graph(v);
copyofGlist = glist;
glist.printGraph();
Graph modified = glist.checkDAG();
modified.printAllEdges(copyofGlist, v);
}
catch (Exception E)
{
System.out
.println("You are trying to access empty adjacency list of a node.");
}
sc.close();
}
}
/*
Enter the number of vertices:
6
Enter the number of edges:
7
Enter the edges in the graph : <from> <to>
1 2
2 3
2 4
4 5
5 6
6 3
6 4
The Graph is:
1 -> 2
2 -> 3 -> 4
4 -> 5
5 -> 6
6 -> 3 -> 4
Minimal set of edges:
3 -> 2
3 -> 6
1 -> 2
2 -> 4
4 -> 5
5 -> 6