programming-examples/java/Computational_Geometry_Problems/Java Program to Compute the Volume of a Tetrahedron Using Determinants.java
2019-11-15 12:59:38 +01:00

135 lines
4.9 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This is a Java Program to compute volume of tetrahedron using determinants. Call the four vertices of the tetrahedron (a, b, c), (d, e, f), (g, h, i), and (p, q, r). Now create a 4-by-4 matrix in which the coordinate triples form the columns of the matrix, with a row of 1s appended at the bottom:
a d g p
b e h q
c f i r
1 1 1 1
The volume of the tetrahedron is 1/6 times the absolute value of the matrix determinant. For any 4-by-4 matrix that has a row of 1s along the bottom, you can compute the determinant with a simplification formula that reduces the problem to a 3-by-3 matrix
a-p d-p g-p
b-q e-q h-q
c-r f-r i-r*/
//This is a java program to find the volume of tetrahedron using a method of determinant
import java.util.Random;
public class Volume_Tetrahedron_Determinants
{
public static double determinant(double A[][], int N)
{
double det = 0;
if (N == 1)
{
det = A[0][0];
}
else if (N == 2)
{
det = A[0][0] * A[1][1] - A[1][0] * A[0][1];
}
else
{
det = 0;
for (int j1 = 0; j1 < N; j1++)
{
double[][] m = new double[N - 1][];
for (int k = 0; k < (N - 1); k++)
{
m[k] = new double[N - 1];
}
for (int i = 1; i < N; i++)
{
int j2 = 0;
for (int j = 0; j < N; j++)
{
if (j == j1)
continue;
m[i - 1][j2] = A[i][j];
j2++;
}
}
det += Math.pow(-1.0, 1.0 + j1 + 1.0) * A[0][j1]
* determinant(m, N - 1);
}
}
return det;
}
public static void main(String args[])
{
Random random = new Random();
int x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4;
x1 = random.nextInt(10);
x2 = random.nextInt(10);
x3 = random.nextInt(10);
x4 = random.nextInt(10);
y1 = random.nextInt(10);
y2 = random.nextInt(10);
y3 = random.nextInt(10);
y4 = random.nextInt(10);
z1 = random.nextInt(10);
z2 = random.nextInt(10);
z3 = random.nextInt(10);
z4 = random.nextInt(10);
double[][] mat = new double[4][4];
mat[0][0] = x1;
mat[0][1] = x2;
mat[0][2] = x3;
mat[0][3] = x4;
mat[1][0] = y1;
mat[1][1] = y2;
mat[1][2] = y3;
mat[1][3] = y4;
mat[2][0] = z1;
mat[2][1] = z2;
mat[2][2] = z3;
mat[2][3] = z4;
mat[3][0] = 1;
mat[3][1] = 1;
mat[3][2] = 1;
mat[3][3] = 1;
System.out
.println("The matrix formed by the coordinates of the tetrahedron is: ");
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
System.out.print(mat[i][j] + " ");
System.out.println();
}
double[][] matrix = new double[3][3];
matrix[0][0] = x1 - x4;
matrix[0][1] = x2 - x4;
matrix[0][2] = x3 - x4;
matrix[1][0] = y1 - y4;
matrix[1][1] = y2 - y4;
matrix[1][2] = y3 - y4;
matrix[2][0] = z1 - z4;
matrix[2][1] = z2 - z4;
matrix[2][2] = z3 - z4;
System.out.println("Matrix after simplification: ");
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
System.out.print(matrix[i][j] + " ");
System.out.println();
}
double det = determinant(matrix, 3) / 6;
if (det < 0)
System.out.println("The Area of the tetrahedron formed by (" + x1
+ "," + y1 + "," + z1 + "),(" + x2 + "," + y2 + "," + z2
+ "),(" + x3 + "," + y3 + "," + z3 + "), = " + (det * -1));
else
System.out.println("The Area of the tetrahedron formed by (" + x1
+ "," + y1 + "," + z1 + "),(" + x2 + "," + y2 + "," + z2
+ "),(" + x3 + "," + y3 + "," + z3 + "), = " + (det * -1));
}
}
/*
The matrix formed by the coordinates of the tetrahedron is:
0.0 9.0 6.0 0.0
4.0 2.0 1.0 1.0
3.0 4.0 7.0 5.0
1.0 1.0 1.0 1.0
Matrix after simplification:
0.0 9.0 6.0
3.0 1.0 0.0
-2.0 -1.0 2.0
The Area of the tetrahedron formed by (0,4,3),(9,2,4),(6,1,7), = 10.0