54 lines
1.3 KiB
Ruby
54 lines
1.3 KiB
Ruby
# Given a sorted array and a value x, Find Ceil(ceiling of x is the smallest element in array greater than or equal to x)
|
|
# and Floor(the greatest element smaller than or equal to x) of x.
|
|
#Algorithm: Binary-search
|
|
#Time-complexity: O(logn),Auxiliary-space:O(1)
|
|
|
|
|
|
def find_floor_ceil(a,key)
|
|
len=a.length
|
|
floor=find_floor(a,0,len,key)
|
|
ceil=find_ceil(a,-1,len-1,key)
|
|
if floor==-1
|
|
puts "floor doesn't exist"
|
|
if ceil==-1
|
|
puts "Ceil doesn't exist"
|
|
return -1
|
|
else
|
|
return "Ceil is #{a[ceil]}"
|
|
end
|
|
else
|
|
if ceil==-1
|
|
puts "Ceil doesn't exist"
|
|
return "Floor is #{a[floor]}"
|
|
else
|
|
return "Floor is #{a[floor]} and Ceil is #{a[ceil]}"
|
|
end
|
|
end
|
|
end
|
|
#Method to find floor
|
|
def find_floor(a,lo,hi,key)
|
|
return -1 if key<a[lo]
|
|
while hi-lo>1
|
|
mid=lo+(hi-lo)/2
|
|
if a[mid]<=key
|
|
lo=mid
|
|
else
|
|
hi=mid
|
|
end
|
|
end
|
|
return lo
|
|
end
|
|
#Method to find Ceil
|
|
def find_ceil(a,lo,hi,key)
|
|
return -1 if key>a[hi]
|
|
while hi-lo>1
|
|
mid=lo+(hi-lo)/2
|
|
if a[mid]>=key
|
|
hi=mid
|
|
else
|
|
lo=mid
|
|
end
|
|
end
|
|
return hi
|
|
end
|
|
find_floor_ceil([1, 2, 8, 10, 10, 12, 19],19) # => Floor is 19 and Ceil is 19 |