47 lines
955 B
Python
47 lines
955 B
Python
# https://en.wikipedia.org/wiki/Dijkstra's_algorithm in O(V^2)
|
|
class Edge:
|
|
def __init__(self, t, cost):
|
|
self.t = t
|
|
self.cost = cost
|
|
|
|
|
|
def dijkstra(graph, s):
|
|
n = len(graph)
|
|
pred = [-1] * n
|
|
prio = [float('inf')] * n
|
|
prio[s] = 0
|
|
visited = [False] * n
|
|
for i in range(n):
|
|
u = -1
|
|
for j in range(n):
|
|
if not visited[j] and (u == -1 or prio[u] > prio[j]):
|
|
u = j
|
|
|
|
if prio[u] == float('inf'):
|
|
break
|
|
|
|
visited[u] = True
|
|
|
|
for e in graph[u]:
|
|
v = e.t
|
|
nprio = prio[u] + e.cost
|
|
if prio[v] > nprio:
|
|
prio[v] = nprio
|
|
pred[v] = u
|
|
|
|
return prio, pred
|
|
|
|
|
|
def test():
|
|
g = [[] for _ in range(3)]
|
|
g[0].append(Edge(1, 3))
|
|
g[0].append(Edge(2, 2))
|
|
g[1].append(Edge(2, -2))
|
|
|
|
dist, pred = dijkstra(g, 0)
|
|
assert dist == [0, 3, 1]
|
|
assert pred == [-1, 0, 1]
|
|
|
|
|
|
test()
|