programming-examples/java/Numerical_Problems/Java Program to Perform Optimal Paranthesization Using Dynamic Programming.java
2019-11-15 12:59:38 +01:00

100 lines
3.2 KiB
Java

/*
Java Program to Perform Optimal Paranthesization Using Dynamic Programming
*/
import java.util.Scanner;
public class OptimalParanthesizationUsingDP
{
private int[][] m;
private int[][] s;
private int n;
public OptimalParanthesizationUsingDP(int[] p)
{
n = p.length - 1; // how many matrices are in the chain
m = new int[n + 1][n + 1]; // overallocate m, so that we don't use index
// 0
s = new int[n + 1][n + 1]; // same for s
matrixChainOrder(p); // run the dynamic-programming algorithm
}
private void matrixChainOrder(int[] p)
{
// Initial the cost for the empty subproblems.
for (int i = 1; i <= n; i++)
m[i][i] = 0;
// Solve for chains of increasing length l.
for (int l = 2; l <= n; l++)
{
for (int i = 1; i <= n - l + 1; i++)
{
int j = i + l - 1;
m[i][j] = Integer.MAX_VALUE;
// Check each possible split to see if it's better
// than all seen so far.
for (int k = i; k < j; k++)
{
int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (q < m[i][j])
{
// q is the best split for this subproblem so far.
m[i][j] = q;
s[i][j] = k;
}
}
}
}
}
private String printOptimalParens(int i, int j)
{
if (i == j)
return "A[" + i + "]";
else
return "(" + printOptimalParens(i, s[i][j])
+ printOptimalParens(s[i][j] + 1, j) + ")";
}
public String toString()
{
return printOptimalParens(1, n);
}
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out
.println("Enter the array p[], which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-1] x p[i]");
System.out.println("Enter the total length: ");
int n = sc.nextInt();
int arr[] = new int[n];
System.out.println("Enter the dimensions: ");
for (int i = 0; i < n; i++)
arr[i] = sc.nextInt();
OptimalParanthesizationUsingDP opudp = new OptimalParanthesizationUsingDP(
arr);
System.out.println("Matrices are of order: ");
for (int i = 1; i < arr.length; i++)
{
System.out.println("A" + i + "-->" + arr[i - 1] + "x" + arr[i]);
}
System.out.println(opudp.toString());
sc.close();
}
}
/*
Enter the array p[], which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-1] x p[i]
Enter the total length:
5
Enter the dimensions:
2 4 5 2 1
Matrices are of order:
A1-->2x4
A2-->4x5
A3-->5x2
A4-->2x1
(A[1](A[2](A[3]A[4])))