programming-examples/java/Graph_Problems_Algorithms/Java Program to Find the Minimum value of Binary Search Tree.java
2019-11-15 12:59:38 +01:00

226 lines
5.3 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This is a Java Program to find minimum value of a Binary Search Tree. A binary search tree (BST), sometimes also called an ordered or sorted binary tree, is a node-based binary tree data structure which has the following properties:
i) The left subtree of a node contains only nodes with keys less than the nodes key.
ii) The right subtree of a node contains only nodes with keys greater than the nodes key.
iii) The left and right subtree must each also be a binary search tree.
iv) There must be no duplicate nodes.*/
/*
* Java Program to Find the Minimum value of Binary Search Tree
*/
import java.util.Scanner;
/* Class BSTNode */
class BSTNode
{
BSTNode left, right;
int data;
/* Constructor */
public BSTNode()
{
left = null;
right = null;
data = 0;
}
/* Constructor */
public BSTNode(int n)
{
left = null;
right = null;
data = n;
}
}
/* Class BST */
class BST
{
private BSTNode root;
/* Constructor */
public BST()
{
root = null;
}
/* Functions to insert data */
public void insert(int data)
{
root = insert(root, data);
}
/* Function to insert data recursively */
private BSTNode insert(BSTNode node, int data)
{
if (node == null)
node = new BSTNode(data);
else
{
if (data <= node.data)
node.left = insert(node.left, data);
else
node.right = insert(node.right, data);
}
return node;
}
/* Function to return least value */
public int minValue()
{
return minValue(root);
}
/* Function to return least value recursively */
private int minValue(BSTNode r)
{
if (r.left == null)
return r.data;
return minValue(r.left);
}
public void inorder()
{
inorder(root);
}
private void inorder(BSTNode r)
{
if (r != null)
{
inorder(r.left);
System.out.print(r.data +" ");
inorder(r.right);
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(BSTNode r)
{
if (r != null)
{
System.out.print(r.data +" ");
preorder(r.left);
preorder(r.right);
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(BSTNode r)
{
if (r != null)
{
postorder(r.left);
postorder(r.right);
System.out.print(r.data +" ");
}
}
}
/* Class MinValueBST */
public class MinValueBST
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/* Creating object of BST */
BST bst = new BST();
System.out.println("Minimum Value of Binary Search Tree Test\n");
char ch;
/* Accept input */
do
{
System.out.println("Enter integer element to insert");
bst.insert( scan.nextInt() );
/* Display tree */
System.out.print("\nPost order : ");
bst.postorder();
System.out.print("\nPre order : ");
bst.preorder();
System.out.print("\nIn order : ");
bst.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
}
while (ch == 'Y'|| ch == 'y');
System.out.println("\nMnimum value of the Binary Search Tree is : "+ bst.minValue());
}
}
/*
Minimum Value of Binary Search Tree Test
Enter integer element to insert
56
Post order : 56
Pre order : 56
In order : 56
Do you want to continue (Type y or n)
y
Enter integer element to insert
23
Post order : 23 56
Pre order : 56 23
In order : 23 56
Do you want to continue (Type y or n)
y
Enter integer element to insert
80
Post order : 23 80 56
Pre order : 56 23 80
In order : 23 56 80
Do you want to continue (Type y or n)
y
Enter integer element to insert
12
Post order : 12 23 80 56
Pre order : 56 23 12 80
In order : 12 23 56 80
Do you want to continue (Type y or n)
y
Enter integer element to insert
234
Post order : 12 23 234 80 56
Pre order : 56 23 12 80 234
In order : 12 23 56 80 234
Do you want to continue (Type y or n)
y
Enter integer element to insert
546
Post order : 12 23 546 234 80 56
Pre order : 56 23 12 80 234 546
In order : 12 23 56 80 234 546
Do you want to continue (Type y or n)
y
Enter integer element to insert
6
Post order : 6 12 23 546 234 80 56
Pre order : 56 23 12 6 80 234 546
In order : 6 12 23 56 80 234 546
Do you want to continue (Type y or n)
y
Enter integer element to insert
32
Post order : 6 12 32 23 546 234 80 56
Pre order : 56 23 12 6 32 80 234 546
In order : 6 12 23 32 56 80 234 546
Do you want to continue (Type y or n)
n
Mnimum value of the Binary Search Tree is : 6