33 lines
1.1 KiB
Java
33 lines
1.1 KiB
Java
/*This Java program is to find the number of spanning trees in a Complete Bipartite graph. This can be calculated using the matrix tree theorem or Cayley’s formula.*/
|
||
|
||
import java.util.Scanner;
|
||
|
||
public class NumOfSpanningBipartite
|
||
{
|
||
private int firstSetSize;
|
||
private int secondSetSize;
|
||
|
||
public int numberOfSpanningTree(int firstSetSize, int secondSetSize)
|
||
{
|
||
this.firstSetSize = firstSetSize;
|
||
this.secondSetSize = secondSetSize;
|
||
return (this.firstSetSize^(this.secondSetSize - 1)) *(this.secondSetSize ^ (this.firstSetSize -1));
|
||
}
|
||
|
||
public static void main(String...arg)
|
||
{
|
||
int m, n;
|
||
Scanner scanner = new Scanner(System.in);
|
||
System.out.println("enter the size of the bipartite graph (m and n)");
|
||
m = scanner.nextInt();
|
||
n = scanner.nextInt();
|
||
NumOfSpanningBipartite bipartite = new NumOfSpanningBipartite();
|
||
System.out.println(" the number of spanning trees are " + bipartite.numberOfSpanningTree(m, n));
|
||
scanner.close();
|
||
}
|
||
}
|
||
|
||
/*
|
||
enter the size of the bipartite graph (m and n)
|
||
2 2
|
||
the number of spanning trees are 9 |