programming-examples/java/Graph_Problems_Algorithms/Java Program to Find MST(Minimum Spanning Tree) using Kruskal’s Algorithm.java
2019-11-15 12:59:38 +01:00

216 lines
7.8 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This Java program to find mst using kruskals algorithm.Kruskals algorithm is a greedy algorithm in graph theory that finds a minimum spanning tree for a connected weighted graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized*/
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
public class KruskalAlgorithm
{
private List<Edge> edges;
private int numberOfVertices;
public static final int MAX_VALUE = 999;
private int visited[];
private int spanning_tree[][];
public KruskalAlgorithm(int numberOfVertices)
{
this.numberOfVertices = numberOfVertices;
edges = new LinkedList<Edge>();
visited = new int[this.numberOfVertices + 1];
spanning_tree = new int[numberOfVertices + 1][numberOfVertices + 1];
}
public void kruskalAlgorithm(int adjacencyMatrix[][])
{
boolean finished = false;
for (int source = 1; source <= numberOfVertices; source++)
{
for (int destination = 1; destination <= numberOfVertices; destination++)
{
if (adjacencyMatrix[source][destination] != MAX_VALUE && source != destination)
{
Edge edge = new Edge();
edge.sourcevertex = source;
edge.destinationvertex = destination;
edge.weight = adjacencyMatrix[source][destination];
adjacencyMatrix[destination][source] = MAX_VALUE;
edges.add(edge);
}
}
}
Collections.sort(edges, new EdgeComparator());
CheckCycle checkCycle = new CheckCycle();
for (Edge edge : edges)
{
spanning_tree[edge.sourcevertex][edge.destinationvertex] = edge.weight;
spanning_tree[edge.destinationvertex][edge.sourcevertex] = edge.weight;
if (checkCycle.checkCycle(spanning_tree, edge.sourcevertex))
{
spanning_tree[edge.sourcevertex][edge.destinationvertex] = 0;
spanning_tree[edge.destinationvertex][edge.sourcevertex] = 0;
edge.weight = -1;
continue;
}
visited[edge.sourcevertex] = 1;
visited[edge.destinationvertex] = 1;
for (int i = 0; i < visited.length; i++)
{
if (visited[i] == 0)
{
finished = false;
break;
}
else
{
finished = true;
}
}
if (finished)
break;
}
System.out.println("The spanning tree is ");
for (int i = 1; i <= numberOfVertices; i++)
System.out.print("\t" + i);
System.out.println();
for (int source = 1; source <= numberOfVertices; source++)
{
System.out.print(source + "\t");
for (int destination = 1; destination <= numberOfVertices; destination++)
{
System.out.print(spanning_tree[source][destination] + "\t");
}
System.out.println();
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
Scanner scan = new Scanner(System.in);
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = MAX_VALUE;
}
}
}
KruskalAlgorithm kruskalAlgorithm = new KruskalAlgorithm(number_of_vertices);
kruskalAlgorithm.kruskalAlgorithm(adjacency_matrix);
scan.close();
}
}
class Edge
{
int sourcevertex;
int destinationvertex;
int weight;
}
class EdgeComparator implements Comparator<Edge>
{
@Override
public int compare(Edge edge1, Edge edge2)
{
if (edge1.weight < edge2.weight)
return -1;
if (edge1.weight > edge2.weight)
return 1;
return 0;
}
}
class CheckCycle
{
private Stack<Integer> stack;
private int adjacencyMatrix[][];
public CheckCycle()
{
stack = new Stack<Integer>();
}
public boolean checkCycle(int adjacency_matrix[][], int source)
{
boolean cyclepresent = false;
int number_of_nodes = adjacency_matrix[source].length - 1;
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
for (int sourcevertex = 1; sourcevertex <= number_of_nodes; sourcevertex++)
{
for (int destinationvertex = 1; destinationvertex <= number_of_nodes; destinationvertex++)
{
adjacencyMatrix[sourcevertex][destinationvertex] = adjacency_matrix[sourcevertex[destinationvertex];
}
}
int visited[] = new int[number_of_nodes + 1];
int element = source;
int i = source;
visited[source] = 1;
stack.push(source);
while (!stack.isEmpty())
{
element = stack.peek();
i = element;
while (i <= number_of_nodes)
{
if (adjacencyMatrix[element][i] >= 1 && visited[i] == 1)
{
if (stack.contains(i))
{
cyclepresent = true;
return cyclepresent;
}
}
if (adjacencyMatrix[element][i] >= 1 && visited[i] == 0)
{
stack.push(i);
visited[i] = 1;
adjacencyMatrix[element][i] = 0;// mark as labelled;
adjacencyMatrix[i][element] = 0;
element = i;
i = 1;
continue;
}
i++;
}
stack.pop();
}
return cyclepresent;
}
}
/*
Enter the number of vertices
6
Enter the Weighted Matrix for the graph
0 6 8 6 0 0
6 0 0 5 10 0
8 0 0 7 5 3
6 5 7 0 0 0
0 10 5 0 0 3
0 0 3 0 3 0
The spanning tree is
1 2 3 4 5 6
1 0 6 0 0 0 0
2 6 0 0 5 0 0
3 0 0 0 7 0 3
4 0 5 7 0 0 0
5 0 0 0 0 0 3
6 0 0 3 0 3 0