programming-examples/java/Graph_Problems_Algorithms/Java Program to Check Whether a Weak Link i.e. Articulation Vertex Exists in a Graph or Check Whether G is Biconnected or Not.java
2019-11-15 12:59:38 +01:00

274 lines
7.0 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This is a java program check if the graph contains any weak link (articulation point). A vertex in an undirected connected graph is an articulation point (or cut vertex) iff removing it (and edges through it) disconnects the graph. Articulation points represent vulnerabilities in a connected network single points whose failure would split the network into 2 or more disconnected components. They are useful for designing reliable networks.*/
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Scanner;
import java.util.Stack;
class Bag<Item> implements Iterable<Item>
{
private int N; // number of elements in bag
private Node<Item> first; // beginning of bag
// helper linked list class
private static class Node<Item>
{
private Item item;
private Node<Item> next;
}
public Bag()
{
first = null;
N = 0;
}
public boolean isEmpty()
{
return first == null;
}
public int size()
{
return N;
}
public void add(Item item)
{
Node<Item> oldfirst = first;
first = new Node<Item>();
first.item = item;
first.next = oldfirst;
N++;
}
public Iterator<Item> iterator()
{
return new ListIterator<Item>(first);
}
// an iterator, doesn't implement remove() since it's optional
private class ListIterator<Item> implements Iterator<Item>
{
private Node<Item> current;
public ListIterator(Node<Item> first)
{
current = first;
}
public boolean hasNext()
{
return current != null;
}
public void remove()
{
throw new UnsupportedOperationException();
}
public Item next()
{
if (!hasNext())
throw new NoSuchElementException();
Item item = current.item;
current = current.next;
return item;
}
}
}
class APGraph
{
private final int V;
private int E;
private Bag<Integer>[] adj;
public APGraph(int V)
{
if (V < 0)
throw new IllegalArgumentException(
"Number of vertices must be nonnegative");
this.V = V;
this.E = 0;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
{
adj[v] = new Bag<Integer>();
}
System.out.println("Enter the number of edges: ");
Scanner sc = new Scanner(System.in);
int E = sc.nextInt();
if (E < 0)
{
sc.close();
throw new IllegalArgumentException(
"Number of edges must be nonnegative");
}
for (int i = 0; i < E; i++)
{
int v = sc.nextInt();
int w = sc.nextInt();
addEdge(v, w);
}
sc.close();
}
public APGraph(APGraph G)
{
this(G.V());
this.E = G.E();
for (int v = 0; v < G.V(); v++)
{
// reverse so that adjacency list is in same order as original
Stack<Integer> reverse = new Stack<Integer>();
for (int w : G.adj[v])
{
reverse.push(w);
}
for (int w : reverse)
{
adj[v].add(w);
}
}
}
public int V()
{
return V;
}
public int E()
{
return E;
}
public void addEdge(int v, int w)
{
if (v < 0 || v >= V)
throw new IndexOutOfBoundsException();
if (w < 0 || w >= V)
throw new IndexOutOfBoundsException();
E++;
adj[v].add(w);
adj[w].add(v);
}
public Iterable<Integer> adj(int v)
{
if (v < 0 || v >= V)
throw new IndexOutOfBoundsException();
return adj[v];
}
public String toString()
{
StringBuilder s = new StringBuilder();
String NEWLINE = System.getProperty("line.separator");
s.append(V + " vertices, " + E + " edges " + NEWLINE);
for (int v = 0; v < V; v++)
{
s.append(v + ": ");
for (int w : adj[v])
{
s.append(w + " ");
}
s.append(NEWLINE);
}
return s.toString();
}
}
public class ArticulationPoints
{
private int[] low;
private int[] pre;
private int cnt;
private boolean[] articulation;
public ArticulationPoints(APGraph G)
{
low = new int[G.V()];
pre = new int[G.V()];
articulation = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
low[v] = -1;
for (int v = 0; v < G.V(); v++)
pre[v] = -1;
for (int v = 0; v < G.V(); v++)
if (pre[v] == -1)
dfs(G, v, v);
}
private void dfs(APGraph G, int u, int v)
{
int children = 0;
pre[v] = cnt++;
low[v] = pre[v];
for (int w : G.adj(v))
{
if (pre[w] == -1)
{
children++;
dfs(G, v, w);
// update low number
low[v] = Math.min(low[v], low[w]);
// non-root of DFS is an articulation point if low[w] >= pre[v]
if (low[w] >= pre[v] && u != v)
articulation[v] = true;
}
// update low number - ignore reverse of edge leading to v
else if (w != u)
low[v] = Math.min(low[v], pre[w]);
}
// root of DFS is an articulation point if it has more than 1 child
if (u == v && children > 1)
articulation[v] = true;
}
// is vertex v an articulation point?
public boolean isArticulation(int v)
{
return articulation[v];
}
// test client
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of vertices: ");
APGraph G = new APGraph(sc.nextInt());
System.out.println(G);
ArticulationPoints bic = new ArticulationPoints(G);
System.out.println("Atriculation points: ");
for (int v = 0; v < G.V(); v++)
if (bic.isArticulation(v))
System.out.println(v);
sc.close();
}
}
/*
Enter the number of vertices:
6
Enter the number of edges:
7
0 1
1 2
1 3
3 4
4 5
5 3
5 2
6 vertices, 7 edges
0: 1
1: 3 2 0
2: 5 1
3: 5 4 1
4: 5 3
5: 2 3 4
Atriculation points:
1