144 lines
5.0 KiB
Java
144 lines
5.0 KiB
Java
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac ClosestPair.java
|
|
* Execution: java ClosestPair < input.txt
|
|
* Dependencies: Point2D.java
|
|
*
|
|
* Given N points in the plane, find the closest pair in N log N time.
|
|
*
|
|
* Note: could speed it up by comparing square of Euclidean distances
|
|
* instead of Euclidean distances.
|
|
*
|
|
*************************************************************************/
|
|
|
|
import java.util.Arrays;
|
|
|
|
import edu.princeton.cs.introcs.StdIn;
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
|
|
public class ClosestPair {
|
|
|
|
// closest pair of points and their Euclidean distance
|
|
private Point2D best1, best2;
|
|
private double bestDistance = Double.POSITIVE_INFINITY;
|
|
|
|
public ClosestPair(Point2D[] points) {
|
|
int N = points.length;
|
|
if (N <= 1) return;
|
|
|
|
// sort by x-coordinate (breaking ties by y-coordinate)
|
|
Point2D[] pointsByX = new Point2D[N];
|
|
for (int i = 0; i < N; i++) pointsByX[i] = points[i];
|
|
Arrays.sort(pointsByX, Point2D.X_ORDER);
|
|
|
|
// check for coincident points
|
|
for (int i = 0; i < N-1; i++) {
|
|
if (pointsByX[i].equals(pointsByX[i+1])) {
|
|
bestDistance = 0.0;
|
|
best1 = pointsByX[i];
|
|
best2 = pointsByX[i+1];
|
|
return;
|
|
}
|
|
}
|
|
|
|
// sort by y-coordinate (but not yet sorted)
|
|
Point2D[] pointsByY = new Point2D[N];
|
|
for (int i = 0; i < N; i++) pointsByY[i] = pointsByX[i];
|
|
|
|
// auxiliary array
|
|
Point2D[] aux = new Point2D[N];
|
|
|
|
closest(pointsByX, pointsByY, aux, 0, N-1);
|
|
}
|
|
|
|
// find closest pair of points in pointsByX[lo..hi]
|
|
// precondition: pointsByX[lo..hi] and pointsByY[lo..hi] are the same sequence of points
|
|
// precondition: pointsByX[lo..hi] sorted by x-coordinate
|
|
// postcondition: pointsByY[lo..hi] sorted by y-coordinate
|
|
private double closest(Point2D[] pointsByX, Point2D[] pointsByY, Point2D[] aux, int lo, int hi) {
|
|
if (hi <= lo) return Double.POSITIVE_INFINITY;
|
|
|
|
int mid = lo + (hi - lo) / 2;
|
|
Point2D median = pointsByX[mid];
|
|
|
|
// compute closest pair with both endpoints in left subarray or both in right subarray
|
|
double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
|
|
double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);
|
|
double delta = Math.min(delta1, delta2);
|
|
|
|
// merge back so that pointsByY[lo..hi] are sorted by y-coordinate
|
|
merge(pointsByY, aux, lo, mid, hi);
|
|
|
|
// aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate
|
|
int M = 0;
|
|
for (int i = lo; i <= hi; i++) {
|
|
if (Math.abs(pointsByY[i].x() - median.x()) < delta)
|
|
aux[M++] = pointsByY[i];
|
|
}
|
|
|
|
// compare each point to its neighbors with y-coordinate closer than delta
|
|
for (int i = 0; i < M; i++) {
|
|
// a geometric packing argument shows that this loop iterates at most 7 times
|
|
for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {
|
|
double distance = aux[i].distanceTo(aux[j]);
|
|
if (distance < delta) {
|
|
delta = distance;
|
|
if (distance < bestDistance) {
|
|
bestDistance = delta;
|
|
best1 = aux[i];
|
|
best2 = aux[j];
|
|
// StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return delta;
|
|
}
|
|
|
|
public Point2D either() { return best1; }
|
|
public Point2D other() { return best2; }
|
|
|
|
public double distance() {
|
|
return bestDistance;
|
|
}
|
|
|
|
// is v < w ?
|
|
private static boolean less(Comparable v, Comparable w) {
|
|
return (v.compareTo(w) < 0);
|
|
}
|
|
|
|
// stably merge a[lo .. mid] with a[mid+1 ..hi] using aux[lo .. hi]
|
|
// precondition: a[lo .. mid] and a[mid+1 .. hi] are sorted subarrays
|
|
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
|
|
// copy to aux[]
|
|
for (int k = lo; k <= hi; k++) {
|
|
aux[k] = a[k];
|
|
}
|
|
|
|
// merge back to a[]
|
|
int i = lo, j = mid+1;
|
|
for (int k = lo; k <= hi; k++) {
|
|
if (i > mid) a[k] = aux[j++];
|
|
else if (j > hi) a[k] = aux[i++];
|
|
else if (less(aux[j], aux[i])) a[k] = aux[j++];
|
|
else a[k] = aux[i++];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
public static void main(String[] args) {
|
|
int N = StdIn.readInt();
|
|
Point2D[] points = new Point2D[N];
|
|
for (int i = 0; i < N; i++) {
|
|
double x = StdIn.readDouble();
|
|
double y = StdIn.readDouble();
|
|
points[i] = new Point2D(x, y);
|
|
}
|
|
ClosestPair closest = new ClosestPair(points);
|
|
StdOut.println(closest.distance() + " from " + closest.either() + " to " + closest.other());
|
|
}
|
|
|
|
}
|