283 lines
10 KiB
Java
283 lines
10 KiB
Java
|
|
|
|
import edu.princeton.cs.introcs.In;
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac BellmanFordSP.java
|
|
* Execution: java BellmanFordSP filename.txt s
|
|
* Dependencies: EdgeWeightedDigraph.java DirectedEdge.java Queue.java
|
|
* EdgeWeightedDirectedCycle.java
|
|
* Data files: http://algs4.cs.princeton.edu/44sp/tinyEWDn.txt
|
|
* http://algs4.cs.princeton.edu/44sp/mediumEWDnc.txt
|
|
*
|
|
* Bellman-Ford shortest path algorithm. Computes the shortest path tree in
|
|
* edge-weighted digraph G from vertex s, or finds a negative cost cycle
|
|
* reachable from s.
|
|
*
|
|
* % java BellmanFordSP tinyEWDn.txt 0
|
|
* 0 to 0 ( 0.00)
|
|
* 0 to 1 ( 0.93) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 6->4 -1.25 4->5 0.35 5->1 0.32
|
|
* 0 to 2 ( 0.26) 0->2 0.26
|
|
* 0 to 3 ( 0.99) 0->2 0.26 2->7 0.34 7->3 0.39
|
|
* 0 to 4 ( 0.26) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 6->4 -1.25
|
|
* 0 to 5 ( 0.61) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52 6->4 -1.25 4->5 0.35
|
|
* 0 to 6 ( 1.51) 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52
|
|
* 0 to 7 ( 0.60) 0->2 0.26 2->7 0.34
|
|
*
|
|
* % java BellmanFordSP tinyEWDnc.txt 0
|
|
* 4->5 0.35
|
|
* 5->4 -0.66
|
|
*
|
|
*
|
|
*************************************************************************/
|
|
|
|
/**
|
|
* The BellmanFordSP class represents a data type for solving the
|
|
* single-source shortest paths problem in edge-weighted digraphs with
|
|
* no negative cycles.
|
|
* The edge weights can be positive, negative, or zero.
|
|
* This class finds either a shortest path from the source vertex s
|
|
* to every other vertex or a negative cycle reachable from the source vertex.
|
|
*
|
|
* This implementation uses the Bellman-Ford-Moore algorithm.
|
|
* The constructor takes time proportional to V ( V + E )
|
|
* in the worst case, where V is the number of vertices and E
|
|
* is the number of edges.
|
|
* Afterwards, the distTo() , hasPathTo() , and hasNegativeCycle()
|
|
* methods take constant time; the pathTo() and negativeCycle()
|
|
* method takes time proportional to the number of edges returned.
|
|
*
|
|
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
|
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
|
*
|
|
* @author Robert Sedgewick
|
|
* @author Kevin Wayne
|
|
*/
|
|
public class BellmanFordSP {
|
|
private double[] distTo; // distTo[v] = distance of shortest s->v path
|
|
private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
|
|
private boolean[] onQueue; // onQueue[v] = is v currently on the queue?
|
|
private Queue<Integer> queue; // queue of vertices to relax
|
|
private int cost; // number of calls to relax()
|
|
private Iterable<DirectedEdge> cycle; // negative cycle (or null if no such cycle)
|
|
|
|
/**
|
|
* Computes a shortest paths tree from s to every other vertex in
|
|
* the edge-weighted digraph G .
|
|
* @param G the acyclic digraph
|
|
* @param s the source vertex
|
|
* @throws IllegalArgumentException unless 0 ≤ s ≤ V - 1
|
|
*/
|
|
public BellmanFordSP(EdgeWeightedDigraph G, int s) {
|
|
distTo = new double[G.V()];
|
|
edgeTo = new DirectedEdge[G.V()];
|
|
onQueue = new boolean[G.V()];
|
|
for (int v = 0; v < G.V(); v++)
|
|
distTo[v] = Double.POSITIVE_INFINITY;
|
|
distTo[s] = 0.0;
|
|
|
|
// Bellman-Ford algorithm
|
|
queue = new Queue<Integer>();
|
|
queue.enqueue(s);
|
|
onQueue[s] = true;
|
|
while (!queue.isEmpty() && !hasNegativeCycle()) {
|
|
int v = queue.dequeue();
|
|
onQueue[v] = false;
|
|
relax(G, v);
|
|
}
|
|
|
|
assert check(G, s);
|
|
}
|
|
|
|
// relax vertex v and put other endpoints on queue if changed
|
|
private void relax(EdgeWeightedDigraph G, int v) {
|
|
for (DirectedEdge e : G.adj(v)) {
|
|
int w = e.to();
|
|
if (distTo[w] > distTo[v] + e.weight()) {
|
|
distTo[w] = distTo[v] + e.weight();
|
|
edgeTo[w] = e;
|
|
if (!onQueue[w]) {
|
|
queue.enqueue(w);
|
|
onQueue[w] = true;
|
|
}
|
|
}
|
|
if (cost++ % G.V() == 0)
|
|
findNegativeCycle();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Is there a negative cycle reachable from the source vertex s ?
|
|
* @return true if there is a negative cycle reachable from the
|
|
* source vertex s , and false otherwise
|
|
*/
|
|
public boolean hasNegativeCycle() {
|
|
return cycle != null;
|
|
}
|
|
|
|
/**
|
|
* Returns a negative cycle reachable from the source vertex s , or null
|
|
* if there is no such cycle.
|
|
* @return a negative cycle reachable from the soruce vertex s
|
|
* as an iterable of edges, and null if there is no such cycle
|
|
*/
|
|
public Iterable<DirectedEdge> negativeCycle() {
|
|
return cycle;
|
|
}
|
|
|
|
// by finding a cycle in predecessor graph
|
|
private void findNegativeCycle() {
|
|
int V = edgeTo.length;
|
|
EdgeWeightedDigraph spt = new EdgeWeightedDigraph(V);
|
|
for (int v = 0; v < V; v++)
|
|
if (edgeTo[v] != null)
|
|
spt.addEdge(edgeTo[v]);
|
|
|
|
EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(spt);
|
|
cycle = finder.cycle();
|
|
}
|
|
|
|
/**
|
|
* Returns the length of a shortest path from the source vertex s to vertex v .
|
|
* @param v the destination vertex
|
|
* @return the length of a shortest path from the source vertex s to vertex v ;
|
|
* Double.POSITIVE_INFINITY if no such path
|
|
* @throws UnsupportedOperationException if there is a negative cost cycle reachable
|
|
* from the source vertex s
|
|
*/
|
|
public double distTo(int v) {
|
|
if (hasNegativeCycle())
|
|
throw new UnsupportedOperationException("Negative cost cycle exists");
|
|
return distTo[v];
|
|
}
|
|
|
|
/**
|
|
* Is there a path from the source s to vertex v ?
|
|
* @param v the destination vertex
|
|
* @return true if there is a path from the source vertex
|
|
* s to vertex v , and false otherwise
|
|
*/
|
|
public boolean hasPathTo(int v) {
|
|
return distTo[v] < Double.POSITIVE_INFINITY;
|
|
}
|
|
|
|
/**
|
|
* Returns a shortest path from the source s to vertex v .
|
|
* @param v the destination vertex
|
|
* @return a shortest path from the source s to vertex v
|
|
* as an iterable of edges, and null if no such path
|
|
* @throws UnsupportedOperationException if there is a negative cost cycle reachable
|
|
* from the source vertex s
|
|
*/
|
|
public Iterable<DirectedEdge> pathTo(int v) {
|
|
if (hasNegativeCycle())
|
|
throw new UnsupportedOperationException("Negative cost cycle exists");
|
|
if (!hasPathTo(v)) return null;
|
|
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
|
|
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
|
|
path.push(e);
|
|
}
|
|
return path;
|
|
}
|
|
|
|
// check optimality conditions: either
|
|
// (i) there exists a negative cycle reacheable from s
|
|
// or
|
|
// (ii) for all edges e = v->w: distTo[w] <= distTo[v] + e.weight()
|
|
// (ii') for all edges e = v->w on the SPT: distTo[w] == distTo[v] + e.weight()
|
|
private boolean check(EdgeWeightedDigraph G, int s) {
|
|
|
|
// has a negative cycle
|
|
if (hasNegativeCycle()) {
|
|
double weight = 0.0;
|
|
for (DirectedEdge e : negativeCycle()) {
|
|
weight += e.weight();
|
|
}
|
|
if (weight >= 0.0) {
|
|
System.err.println("error: weight of negative cycle = " + weight);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// no negative cycle reachable from source
|
|
else {
|
|
|
|
// check that distTo[v] and edgeTo[v] are consistent
|
|
if (distTo[s] != 0.0 || edgeTo[s] != null) {
|
|
System.err.println("distanceTo[s] and edgeTo[s] inconsistent");
|
|
return false;
|
|
}
|
|
for (int v = 0; v < G.V(); v++) {
|
|
if (v == s) continue;
|
|
if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
|
|
System.err.println("distTo[] and edgeTo[] inconsistent");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check that all edges e = v->w satisfy distTo[w] <= distTo[v] + e.weight()
|
|
for (int v = 0; v < G.V(); v++) {
|
|
for (DirectedEdge e : G.adj(v)) {
|
|
int w = e.to();
|
|
if (distTo[v] + e.weight() < distTo[w]) {
|
|
System.err.println("edge " + e + " not relaxed");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check that all edges e = v->w on SPT satisfy distTo[w] == distTo[v] + e.weight()
|
|
for (int w = 0; w < G.V(); w++) {
|
|
if (edgeTo[w] == null) continue;
|
|
DirectedEdge e = edgeTo[w];
|
|
int v = e.from();
|
|
if (w != e.to()) return false;
|
|
if (distTo[v] + e.weight() != distTo[w]) {
|
|
System.err.println("edge " + e + " on shortest path not tight");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
StdOut.println("Satisfies optimality conditions");
|
|
StdOut.println();
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Unit tests the BellmanFordSP data type.
|
|
*/
|
|
public static void main(String[] args) {
|
|
In in = new In(args[0]);
|
|
int s = Integer.parseInt(args[1]);
|
|
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
|
|
|
|
BellmanFordSP sp = new BellmanFordSP(G, s);
|
|
|
|
// print negative cycle
|
|
if (sp.hasNegativeCycle()) {
|
|
for (DirectedEdge e : sp.negativeCycle())
|
|
StdOut.println(e);
|
|
}
|
|
|
|
// print shortest paths
|
|
else {
|
|
for (int v = 0; v < G.V(); v++) {
|
|
if (sp.hasPathTo(v)) {
|
|
StdOut.printf("%d to %d (%5.2f) ", s, v, sp.distTo(v));
|
|
for (DirectedEdge e : sp.pathTo(v)) {
|
|
StdOut.print(e + " ");
|
|
}
|
|
StdOut.println();
|
|
}
|
|
else {
|
|
StdOut.printf("%d to %d no path\n", s, v);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|