programming-examples/java/Data_Structures/AcyclicSP.java
2019-11-15 12:59:38 +01:00

143 lines
5.0 KiB
Java

import edu.princeton.cs.introcs.In;
import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac AcyclicSP.java
* Execution: java AcyclicSP V E
* Dependencies: EdgeWeightedDigraph.java DirectedEdge.java Topological.java
* Data files: http://algs4.cs.princeton.edu/44sp/tinyEWDAG.txt
*
* Computes shortest paths in an edge-weighted acyclic digraph.
*
* % java AcyclicSP tinyEWDAG.txt 5
* 5 to 0 (0.73) 5->4 0.35 4->0 0.38
* 5 to 1 (0.32) 5->1 0.32
* 5 to 2 (0.62) 5->7 0.28 7->2 0.34
* 5 to 3 (0.61) 5->1 0.32 1->3 0.29
* 5 to 4 (0.35) 5->4 0.35
* 5 to 5 (0.00)
* 5 to 6 (1.13) 5->1 0.32 1->3 0.29 3->6 0.52
* 5 to 7 (0.28) 5->7 0.28
*
*************************************************************************/
/**
* The AcyclicSP class represents a data type for solving the
* single-source shortest paths problem in edge-weighted directed acyclic
* graphs (DAGs). The edge weights can be positive, negative, or zero.
*
* This implementation uses a topological-sort based algorithm.
* The constructor takes time proportional to V + E ,
* where V is the number of vertices and E is the number of edges.
* Afterwards, the distTo() and hasPathTo() methods take
* constant time and the pathTo() method takes time proportional to the
* number of edges in the shortest path returned.
*
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class AcyclicSP {
private double[] distTo; // distTo[v] = distance of shortest s->v path
private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
/**
* Computes a shortest paths tree from s to every other vertex in
* the directed acyclic graph G .
* @param G the acyclic digraph
* @param s the source vertex
* @throws IllegalArgumentException if the digraph is not acyclic
* @throws IllegalArgumentException unless 0 &le; s &le; V - 1
*/
public AcyclicSP(EdgeWeightedDigraph G, int s) {
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
// visit vertices in toplogical order
Topological topological = new Topological(G);
if (!topological.hasOrder())
throw new IllegalArgumentException("Digraph is not acyclic.");
for (int v : topological.order()) {
for (DirectedEdge e : G.adj(v))
relax(e);
}
}
// relax edge e
private void relax(DirectedEdge e) {
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight()) {
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
}
}
/**
* Returns the length of a shortest path from the source vertex s to vertex v .
* @param v the destination vertex
* @return the length of a shortest path from the source vertex s to vertex v ;
* Double.POSITIVE_INFINITY if no such path
*/
public double distTo(int v) {
return distTo[v];
}
/**
* Is there a path from the source vertex s to vertex v ?
* @param v the destination vertex
* @return true if there is a path from the source vertex
* s to vertex v , and false otherwise
*/
public boolean hasPathTo(int v) {
return distTo[v] < Double.POSITIVE_INFINITY;
}
/**
* Returns a shortest path from the source vertex s to vertex v .
* @param v the destination vertex
* @return a shortest path from the source vertex s to vertex v
* as an iterable of edges, and null if no such path
*/
public Iterable<DirectedEdge> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
path.push(e);
}
return path;
}
/**
* Unit tests the AcyclicSP data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
// find shortest path from s to each other vertex in DAG
AcyclicSP sp = new AcyclicSP(G, s);
for (int v = 0; v < G.V(); v++) {
if (sp.hasPathTo(v)) {
StdOut.printf("%d to %d (%.2f) ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v)) {
StdOut.print(e + " ");
}
StdOut.println();
}
else {
StdOut.printf("%d to %d no path\n", s, v);
}
}
}
}