155 lines
4.9 KiB
C++
155 lines
4.9 KiB
C++
/*This is a C++ Program to find longest path in DAG. Given a Weighted Directed Acyclic Graph (DAG) and a source vertex s in it, find the longest distances from s to all other vertices in the given graph. Following is complete algorithm for finding longest distances.
|
||
1) Initialize dist[] = {NINF, NINF, ….} and dist[s] = 0 where s is the source vertex. Here NINF means negative infinite.
|
||
2) Create a toplogical order of all vertices.
|
||
3) Do following for every vertex u in topological order.
|
||
………..Do following for every adjacent vertex v of u
|
||
………………if (dist[v] < dist[u] + weight(u, v)) ………………………dist[v] = dist[u] + weight(u, v) */
|
||
|
||
// A C++ program to find single source longest distances in a DAG
|
||
#include <iostream>
|
||
#include <list>
|
||
#include <stack>
|
||
#include <limits.h>
|
||
#define NINF INT_MIN
|
||
using namespace std;
|
||
|
||
// Graph is represented using adjacency list. Every node of adjacency list
|
||
// contains vertex number of the vertex to which edge connects. It also
|
||
// contains weight of the edge
|
||
class AdjListNode
|
||
{
|
||
int v;
|
||
int weight;
|
||
public:
|
||
AdjListNode(int _v, int _w)
|
||
{
|
||
v = _v;
|
||
weight = _w;
|
||
}
|
||
int getV()
|
||
{
|
||
return v;
|
||
}
|
||
int getWeight()
|
||
{
|
||
return weight;
|
||
}
|
||
};
|
||
|
||
// Class to represent a graph using adjacency list representation
|
||
class Graph
|
||
{
|
||
int V; // No. of vertices’
|
||
|
||
// Pointer to an array containing adjacency lists
|
||
list<AdjListNode> *adj;
|
||
|
||
// A function used by longestPath
|
||
void topologicalSortUtil(int v, bool visited[], stack<int> &Stack);
|
||
public:
|
||
Graph(int V); // Constructor
|
||
|
||
// function to add an edge to graph
|
||
void addEdge(int u, int v, int weight);
|
||
|
||
// Finds longest distances from given source vertex
|
||
void longestPath(int s);
|
||
};
|
||
|
||
Graph::Graph(int V) // Constructor
|
||
{
|
||
this->V = V;
|
||
adj = new list<AdjListNode> [V];
|
||
}
|
||
|
||
void Graph::addEdge(int u, int v, int weight)
|
||
{
|
||
AdjListNode node(v, weight);
|
||
adj[u].push_back(node); // Add v to u’s list
|
||
}
|
||
|
||
// A recursive function used by longestPath. See below link for details
|
||
// http://www.geeksforgeeks.org/topological-sorting/
|
||
void Graph::topologicalSortUtil(int v, bool visited[], stack<int> &Stack)
|
||
{
|
||
// Mark the current node as visited
|
||
visited[v] = true;
|
||
// Recur for all the vertices adjacent to this vertex
|
||
list<AdjListNode>::iterator i;
|
||
for (i = adj[v].begin(); i != adj[v].end(); ++i)
|
||
{
|
||
AdjListNode node = *i;
|
||
if (!visited[node.getV()])
|
||
topologicalSortUtil(node.getV(), visited, Stack);
|
||
}
|
||
// Push current vertex to stack which stores topological sort
|
||
Stack.push(v);
|
||
}
|
||
|
||
// The function to find longest distances from a given vertex. It uses
|
||
// recursive topologicalSortUtil() to get topological sorting.
|
||
void Graph::longestPath(int s)
|
||
{
|
||
stack<int> Stack;
|
||
int dist[V];
|
||
// Mark all the vertices as not visited
|
||
bool *visited = new bool[V];
|
||
for (int i = 0; i < V; i++)
|
||
visited[i] = false;
|
||
// Call the recursive helper function to store Topological Sort
|
||
// starting from all vertices one by one
|
||
for (int i = 0; i < V; i++)
|
||
if (visited[i] == false)
|
||
topologicalSortUtil(i, visited, Stack);
|
||
// Initialize distances to all vertices as infinite and distance
|
||
// to source as 0
|
||
for (int i = 0; i < V; i++)
|
||
dist[i] = NINF;
|
||
dist[s] = 0;
|
||
// Process vertices in topological order
|
||
while (Stack.empty() == false)
|
||
{
|
||
// Get the next vertex from topological order
|
||
int u = Stack.top();
|
||
Stack.pop();
|
||
// Update distances of all adjacent vertices
|
||
list<AdjListNode>::iterator i;
|
||
if (dist[u] != NINF)
|
||
{
|
||
for (i = adj[u].begin(); i != adj[u].end(); ++i)
|
||
if (dist[i->getV()] < dist[u] + i->getWeight())
|
||
dist[i->getV()] = dist[u] + i->getWeight();
|
||
}
|
||
}
|
||
// Print the calculated longest distances
|
||
for (int i = 0; i < V; i++)
|
||
(dist[i] == NINF) ? cout << "INF " : cout << dist[i] << " ";
|
||
}
|
||
|
||
// Driver program to test above functions
|
||
int main()
|
||
{
|
||
// Create a graph given in the above diagram. Here vertex numbers are
|
||
// 0, 1, 2, 3, 4, 5 with following mappings:
|
||
// 0=r, 1=s, 2=t, 3=x, 4=y, 5=z
|
||
Graph g(6);
|
||
g.addEdge(0, 1, 5);
|
||
g.addEdge(0, 2, 3);
|
||
g.addEdge(1, 3, 6);
|
||
g.addEdge(1, 2, 2);
|
||
g.addEdge(2, 4, 4);
|
||
g.addEdge(2, 5, 2);
|
||
g.addEdge(2, 3, 7);
|
||
g.addEdge(3, 5, 1);
|
||
g.addEdge(3, 4, -1);
|
||
g.addEdge(4, 5, -2);
|
||
int s = 1;
|
||
cout << "Following are longest distances from source vertex " << s << " \n";
|
||
g.longestPath(s);
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
|
||
Following are longest distances from source vertex 1
|
||
INF 0 2 9 8 10
|