111 lines
2.5 KiB
C++
111 lines
2.5 KiB
C++
/*
|
|
* C++ Program to Find Hamiltonian Cycle
|
|
*/
|
|
#include <iostream>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#define V 5
|
|
using namespace std;
|
|
|
|
void printSolution(int path[]);
|
|
|
|
/*
|
|
* check if the vertex v can be added at index 'pos' in the Hamiltonian Cycle
|
|
*/
|
|
bool isSafe(int v, bool graph[V][V], int path[], int pos)
|
|
{
|
|
if (graph [path[pos-1]][v] == 0)
|
|
return false;
|
|
for (int i = 0; i < pos; i++)
|
|
if (path[i] == v)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* solve hamiltonian cycle problem */
|
|
bool hamCycleUtil(bool graph[V][V], int path[], int pos)
|
|
{
|
|
if (pos == V)
|
|
{
|
|
if (graph[ path[pos-1] ][ path[0] ] == 1)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
for (int v = 1; v < V; v++)
|
|
{
|
|
if (isSafe(v, graph, path, pos))
|
|
{
|
|
path[pos] = v;
|
|
if (hamCycleUtil (graph, path, pos+1) == true)
|
|
return true;
|
|
path[pos] = -1;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* solves the Hamiltonian Cycle problem using Backtracking.*/
|
|
bool hamCycle(bool graph[V][V])
|
|
{
|
|
int *path = new int[V];
|
|
for (int i = 0; i < V; i++)
|
|
path[i] = -1;
|
|
path[0] = 0;
|
|
if (hamCycleUtil(graph, path, 1) == false)
|
|
{
|
|
cout<<"\nSolution does not exist"<<endl;
|
|
return false;
|
|
}
|
|
printSolution(path);
|
|
return true;
|
|
}
|
|
|
|
/* Main */
|
|
void printSolution(int path[])
|
|
{
|
|
cout<<"Solution Exists:";
|
|
cout<<" Following is one Hamiltonian Cycle \n"<<endl;
|
|
for (int i = 0; i < V; i++)
|
|
cout<<path[i]<<" ";
|
|
cout<< path[0]<<endl;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
/* Let us create the following graph
|
|
(0)--(1)--(2)
|
|
| / \ |
|
|
| / \ |
|
|
| / \ |
|
|
(3)-------(4) */
|
|
bool graph1[V][V] = {{0, 1, 0, 1, 0},
|
|
{1, 0, 1, 1, 1},
|
|
{0, 1, 0, 0, 1},
|
|
{1, 1, 0, 0, 1},
|
|
{0, 1, 1, 1, 0},
|
|
};
|
|
hamCycle(graph1);
|
|
/* Let us create the following graph
|
|
(0)--(1)--(2)
|
|
| / \ |
|
|
| / \ |
|
|
| / \ |
|
|
(3) (4) */
|
|
bool graph2[V][V] = {{0, 1, 0, 1, 0},
|
|
{1, 0, 1, 1, 1},
|
|
{0, 1, 0, 0, 1},
|
|
{1, 1, 0, 0, 0},
|
|
{0, 1, 1, 0, 0},
|
|
};
|
|
hamCycle(graph2);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
|
|
Solution Exists: Following is one Hamiltonian Cycle
|
|
|
|
0 1 2 4 3 0
|
|
|
|
Solution does not exist
|