programming-examples/c++/Computational_Geometry/C++ Program to Implement SIMPSON'S (Three Eight) RULE OF INTEGRATION.cpp
2019-11-15 12:59:38 +01:00

66 lines
2.2 KiB
C++

/*----------------- SIMPSON'S 3/8 RULE OF INTEGRATION ----------------*/
/* THIS PROGRAM CALCULATES THE VALUE OF INTEGRATION USING
SIMPSON'S 3/8 RULE. THE FUNCTION TO BE INTEGRATED IS,
f(x) = 4 + 2 sin x
INPUTS : 1) Lower and upper limits of integration.
2) Number of intervals.
OUTPUTS : Result of integration. */
/*------------------------------ PROGRAM -------------------------*/
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<conio.h>
void main()
{
double fx (double x0); /* DECLARATION OF A FUNCTION fx */
double lo,up,f[20],h,x0,sum,result;
int i,n;
clrscr();
printf("\n\t SIMPSON'S 3/8 RULE OF INTEGRATION");
printf("\n\nEnter the lower limit of integration = ");
scanf("%lf",&lo); /* ENTER LOWER LIMIT OF INTEGRATION */
printf("\n\nEnter the upper limit of integration = ");
scanf("%lf",&up); /* ENTER UPPER LIMIT OF INTEGRATION */
printf("\n\nEnter the value of h = ");
scanf("%lf",&h); /* ENTER THE VALUE OF h */
n = (up - lo)/h; /* CALCULATION VALUE OF n i.e.STRIPS */
x0 = lo;
for(i = 0; i <= n; i++) /* LOOP TO CALCULATE VALUE OF f(x) */
{
f[i] = fx(x0); /* FUNCTION fx IS CALLED HERE */
x0 = x0 + h; /* NEXT VALUE OF x IS CALCULATED HERE */
}
sum = 0;
for(i = 1; i <= n-1; i++)
{
if(i == 3*(i/3) ) continue;
sum = sum + 3*f[i]; /* 3 * SUM OF ORDINATES NOT MULTIPLE OF 3 */
}
for(i = 3; i <= n-1; i = i + 3)
{
sum = sum + 2*f[i]; /*2 * SUM OF ORDINATES WHICH ARE MULTIPLE OF 3*/
}
result = (3*h/8) * ( f[0] + f[n] + sum );
/*Result = (3h/8) * (3 * sum of ordinates not multiple of 3
+ 2 * sum of ordinates which are multiple of 3 ) */
printf("\n\nThe result of integration is = %lf",result);
}
double fx ( double x) /* FUNCTION TO CALCULATE VALUE OF f(x) */
{
double f;
f = 4 + 2 * sin(x); /* function f(x) = 4 + 2 sin x */
return(f);
}
/*------------------------ END OF PROGRAM ------------------------------*/