programming-examples/c++/Computational_Geometry/C++ Program to Implement NEWTON RAPHSON METHOD TO FIND ROOT OF AN EQUATION.cpp
2019-11-15 12:59:38 +01:00

73 lines
2.3 KiB
C++

/*----------- NEWTON RAPHSON METHOD TO FIND ROOT OF AN EQUATION -------*/
/* THE EXPRESSION FOR AN EQUATION IS DEFINED IN function fx
YOU CAN WRITE DIFFERENT EQUATION IN function fx.
HERE,
f(x) = x*x*x - 5*x + 3
INPUTS : 1) Initial approximation x0 to the root.
2) Number of iterations.
OUTPUTS : Value of the root. */
/*------------------------------ PROGRAM ----------------------------*/
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<conio.h>
void main()
{
double fx ( double x); /* DECLARATION OF FUNCTION */
double f_x ( double x); /* CALCULATION OF DERIVATIVE */
double x0,x1,f_0,f0;
int n,i;
clrscr();
printf("\n NEWTON RAPHSON METHOD TO FIND ROOT OF AN EQUATION");
printf("\n\n f(x) = x*x*x - 5*x + 3");
printf("\n\nEnter the value of initial "
"approximation x0 = ");
scanf("%lf",&x0);
/* INITIAL APPROXIMATION x0 IS TO BE ENTERED HERE */
printf("\nEnter the number of iterations = ");
scanf("%d",&n);
printf("\npress any key for display of iterations...\n");
getch();
i = 0;
while(n-- > 0)
{
f0 = fx(x0); /* CALCULATE f(x) AT x = x0 */
f_0 = f_x(x0); /* CALCULATE f'(x) AT x = x1 */
x1 = x0 - (f0/f_0);
/* CALCULATION OF NEXT APPROXIMATION */
i++;
printf("\n%d x%d = %lf \n"
"\n f%d = %lf f_%d = %lf x%d = %lf\n"
,i,i-1,x0,i-1,f0,i-1,f_0,i,x1);
x0 = x1;
getch();
}
printf("\n\nThe value of root is = %20.15lf",x1); /* ROOT */
}
/*---------- FUNCTION PROCEDURE TO CALCULATE VALUE OF EQUATION --------*/
double fx ( double x)
{
double f;
f = x*x*x - 5*x + 3; /* FUNCTION f(x) */
return(f);
}
/*---------- FUNCTION PROCEDURE TO CALCULATE f'(x0) --------------------*/
double f_x ( double x)
{
double f_dash;
f_dash = 3*x*x - 5; /* DERIVATIVE OF f(x) i.e. f'(x) */
return(f_dash);
}
/*--------------------- End of program --------------------------------*/