programming-examples/c++/Computational_Geometry/C++ Program to Implement Graham Scan Algorithm to Find the Convex Hull.cpp
2019-11-15 12:59:38 +01:00

125 lines
3.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This is a C++ Program to implement Graham Scan algorithm. Grahams scan is a method of computing the convex hull of a finite set of points in the plane with time complexity O(n log n).*/
// A C++ program to find convex hull of a set of points
// Refer http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
// for explanation of orientation()
#include <iostream>
#include <stack>
#include <stdlib.h>
using namespace std;
struct Point
{
int x;
int y;
};
Point p0;
// A utility function to find next to top in a stack
Point nextToTop(stack<Point> &S)
{
Point p = S.top();
S.pop();
Point res = S.top();
S.push(p);
return res;
}
// A utility function to swap two points
int swap(Point &p1, Point &p2)
{
Point temp = p1;
p1 = p2;
p2 = temp;
}
// A utility function to return square of distance between p1 and p2
int dist(Point p1, Point p2)
{
return (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y);
}
int orientation(Point p, Point q, Point r)
{
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (val == 0)
return 0; // colinear
return (val > 0) ? 1 : 2; // clock or counterclock wise
}
// A function used by library function qsort() to sort an array of
// points with respect to the first point
int compare(const void *vp1, const void *vp2)
{
Point *p1 = (Point *) vp1;
Point *p2 = (Point *) vp2;
// Find orientation
int o = orientation(p0, *p1, *p2);
if (o == 0)
return (dist(p0, *p2) >= dist(p0, *p1)) ? -1 : 1;
return (o == 2) ? -1 : 1;
}
// Prints convex hull of a set of n points.
void convexHull(Point points[], int n)
{
// Find the bottommost point
int ymin = points[0].y, min = 0;
for (int i = 1; i < n; i++)
{
int y = points[i].y;
// Pick the bottom-most or chose the left most point in case of tie
if ((y < ymin) || (ymin == y && points[i].x < points[min].x))
ymin = points[i].y, min = i;
}
// Place the bottom-most point at first position
swap(points[0], points[min]);
// Sort n-1 points with respect to the first point. A point p1 comes
// before p2 in sorted ouput if p2 has larger polar angle (in
// counterclockwise direction) than p1
p0 = points[0];
qsort(&points[1], n - 1, sizeof(Point), compare);
// Create an empty stack and push first three points to it.
stack<Point> S;
S.push(points[0]);
S.push(points[1]);
S.push(points[2]);
// Process remaining n-3 points
for (int i = 3; i < n; i++)
{
// Keep removing top while the angle formed by points next-to-top,
// top, and points[i] makes a non-left turn
while (orientation(nextToTop(S), S.top(), points[i]) != 2)
S.pop();
S.push(points[i]);
}
// Now stack has the output points, print contents of stack
while (!S.empty())
{
Point p = S.top();
cout << "(" << p.x << ", " << p.y << ")" << endl;
S.pop();
}
}
// Driver program to test above functions
int main()
{
Point points[] = { { 0, 3 }, { 1, 1 }, { 2, 2 }, { 4, 4 }, { 0, 0 },
{ 1, 2 }, { 3, 1 }, { 3, 3 }
};
int n = sizeof(points) / sizeof(points[0]);
cout << "The points in the convex hull are: \n";
convexHull(points, n);
return 0;
}
/*
The points in the convex hull are:
(0, 3)
(4, 4)
(3, 1)
(0, 0)