565 lines
20 KiB
C++
565 lines
20 KiB
C++
#if !defined(MATRIX_H)
|
|
#define MATRIX_H
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include <tchar.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
class CMatrix
|
|
{
|
|
private:
|
|
int m_rows;
|
|
int m_cols;
|
|
char m_name[128];
|
|
CMatrix();
|
|
public:
|
|
double **m_pData;
|
|
CMatrix(const char *name, int rows, int cols) :
|
|
m_rows(rows), m_cols(cols)
|
|
{
|
|
strcpy(m_name, name);
|
|
m_pData = new double*[m_rows];
|
|
for (int i = 0; i < m_rows; i++)
|
|
m_pData[i] = new double[m_cols];
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
m_pData[i][j] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
CMatrix(const CMatrix &other)
|
|
{
|
|
strcpy(m_name, other.m_name);
|
|
m_rows = other.m_rows;
|
|
m_cols = other.m_cols;
|
|
m_pData = new double*[m_rows];
|
|
for (int i = 0; i < m_rows; i++)
|
|
m_pData[i] = new double[m_cols];
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
m_pData[i][j] = other.m_pData[i][j];
|
|
}
|
|
}
|
|
}
|
|
~CMatrix()
|
|
{
|
|
for (int i = 0; i < m_rows; i++)
|
|
delete[] m_pData[i];
|
|
delete[] m_pData;
|
|
m_rows = m_cols = 0;
|
|
}
|
|
void SetName(const char *name)
|
|
{
|
|
strcpy(m_name, name);
|
|
}
|
|
const char* GetName() const
|
|
{
|
|
return m_name;
|
|
}
|
|
void GetInput()
|
|
{
|
|
std::cin >> *this;
|
|
}
|
|
void FillSimulatedInput()
|
|
{
|
|
static int factor1 = 1, factor2 = 2;
|
|
std::cout << "\n\nEnter Input For Matrix : " << m_name << " Rows: "
|
|
<< m_rows << " Cols: " << m_cols << "\n";
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
std::cout << "Input For Row: " << i + 1 << " Col: " << j
|
|
+ 1 << " = ";
|
|
int data = ((i + 1) * factor1) + (j + 1) * factor2;
|
|
m_pData[i][j] = data / 10.2;
|
|
std::cout << m_pData[i][j] << "\n";
|
|
factor1 += (rand() % 4);
|
|
factor2 += (rand() % 3);
|
|
}
|
|
std::cout << "\n";
|
|
}
|
|
std::cout << "\n";
|
|
}
|
|
double Determinant()
|
|
{
|
|
double det = 0;
|
|
double **pd = m_pData;
|
|
switch (m_rows)
|
|
{
|
|
case 2:
|
|
{
|
|
det = pd[0][0] * pd[1][1] - pd[0][1] * pd[1][0];
|
|
return det;
|
|
}
|
|
break;
|
|
case 3:
|
|
{
|
|
/***
|
|
a b c
|
|
d e f
|
|
g h i
|
|
|
|
a b c a b c
|
|
d e f d e f
|
|
g h i g h i
|
|
|
|
// det (A) = aei + bfg + cdh - afh - bdi - ceg.
|
|
***/
|
|
double a = pd[0][0];
|
|
double b = pd[0][1];
|
|
double c = pd[0][2];
|
|
double d = pd[1][0];
|
|
double e = pd[1][1];
|
|
double f = pd[1][2];
|
|
double g = pd[2][0];
|
|
double h = pd[2][1];
|
|
double i = pd[2][2];
|
|
double det = (a * e * i + b * f * g + c * d * h);
|
|
det = det - a * f * h;
|
|
det = det - b * d * i;
|
|
det = det - c * e * g;
|
|
return det;
|
|
}
|
|
break;
|
|
case 4:
|
|
{
|
|
CMatrix *temp[4];
|
|
for (int i = 0; i < 4; i++)
|
|
temp[i] = new CMatrix("", 3, 3);
|
|
for (int k = 0; k < 4; k++)
|
|
{
|
|
for (int i = 1; i < 4; i++)
|
|
{
|
|
int j1 = 0;
|
|
for (int j = 0; j < 4; j++)
|
|
{
|
|
if (k == j)
|
|
continue;
|
|
temp[k]->m_pData[i - 1][j1++]
|
|
= this->m_pData[i][j];
|
|
}
|
|
}
|
|
}
|
|
double det = this->m_pData[0][0] * temp[0]->Determinant()
|
|
- this->m_pData[0][1] * temp[1]->Determinant()
|
|
+ this->m_pData[0][2] * temp[2]->Determinant()
|
|
- this->m_pData[0][3] * temp[3]->Determinant();
|
|
return det;
|
|
}
|
|
break;
|
|
case 5:
|
|
{
|
|
CMatrix *temp[5];
|
|
for (int i = 0; i < 5; i++)
|
|
temp[i] = new CMatrix("", 4, 4);
|
|
for (int k = 0; k < 5; k++)
|
|
{
|
|
for (int i = 1; i < 5; i++)
|
|
{
|
|
int j1 = 0;
|
|
for (int j = 0; j < 5; j++)
|
|
{
|
|
if (k == j)
|
|
continue;
|
|
temp[k]->m_pData[i - 1][j1++]
|
|
= this->m_pData[i][j];
|
|
}
|
|
}
|
|
}
|
|
double det = this->m_pData[0][0] * temp[0]->Determinant()
|
|
- this->m_pData[0][1] * temp[1]->Determinant()
|
|
+ this->m_pData[0][2] * temp[2]->Determinant()
|
|
- this->m_pData[0][3] * temp[3]->Determinant()
|
|
+ this->m_pData[0][4] * temp[4]->Determinant();
|
|
return det;
|
|
}
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
case 9:
|
|
case 10:
|
|
case 11:
|
|
case 12:
|
|
default:
|
|
{
|
|
int DIM = m_rows;
|
|
CMatrix **temp = new CMatrix*[DIM];
|
|
for (int i = 0; i < DIM; i++)
|
|
temp[i] = new CMatrix("", DIM - 1, DIM - 1);
|
|
for (int k = 0; k < DIM; k++)
|
|
{
|
|
for (int i = 1; i < DIM; i++)
|
|
{
|
|
int j1 = 0;
|
|
for (int j = 0; j < DIM; j++)
|
|
{
|
|
if (k == j)
|
|
continue;
|
|
temp[k]->m_pData[i - 1][j1++]
|
|
= this->m_pData[i][j];
|
|
}
|
|
}
|
|
}
|
|
double det = 0;
|
|
for (int k = 0; k < DIM; k++)
|
|
{
|
|
if ((k % 2) == 0)
|
|
det = det + (this->m_pData[0][k]
|
|
* temp[k]->Determinant());
|
|
else
|
|
det = det - (this->m_pData[0][k]
|
|
* temp[k]->Determinant());
|
|
}
|
|
for (int i = 0; i < DIM; i++)
|
|
delete temp[i];
|
|
delete[] temp;
|
|
return det;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
CMatrix& operator =(const CMatrix &other)
|
|
{
|
|
if (this->m_rows != other.m_rows || this->m_cols != other.m_cols)
|
|
{
|
|
std::cout
|
|
<< "WARNING: Assignment is taking place with by changing the number of rows and columns of the matrix";
|
|
}
|
|
for (int i = 0; i < m_rows; i++)
|
|
delete[] m_pData[i];
|
|
delete[] m_pData;
|
|
m_rows = m_cols = 0;
|
|
strcpy(m_name, other.m_name);
|
|
m_rows = other.m_rows;
|
|
m_cols = other.m_cols;
|
|
m_pData = new double*[m_rows];
|
|
for (int i = 0; i < m_rows; i++)
|
|
m_pData[i] = new double[m_cols];
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
m_pData[i][j] = other.m_pData[i][j];
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
CMatrix CoFactor()
|
|
{
|
|
CMatrix cofactor("COF", m_rows, m_cols);
|
|
if (m_rows != m_cols)
|
|
return cofactor;
|
|
if (m_rows < 2)
|
|
return cofactor;
|
|
else if (m_rows == 2)
|
|
{
|
|
cofactor.m_pData[0][0] = m_pData[1][1];
|
|
cofactor.m_pData[0][1] = -m_pData[1][0];
|
|
cofactor.m_pData[1][0] = -m_pData[0][1];
|
|
cofactor.m_pData[1][1] = m_pData[0][0];
|
|
return cofactor;
|
|
}
|
|
else if (m_rows >= 3)
|
|
{
|
|
int DIM = m_rows;
|
|
CMatrix ***temp = new CMatrix**[DIM];
|
|
for (int i = 0; i < DIM; i++)
|
|
temp[i] = new CMatrix*[DIM];
|
|
for (int i = 0; i < DIM; i++)
|
|
for (int j = 0; j < DIM; j++)
|
|
temp[i][j] = new CMatrix("", DIM - 1, DIM - 1);
|
|
for (int k1 = 0; k1 < DIM; k1++)
|
|
{
|
|
for (int k2 = 0; k2 < DIM; k2++)
|
|
{
|
|
int i1 = 0;
|
|
for (int i = 0; i < DIM; i++)
|
|
{
|
|
int j1 = 0;
|
|
for (int j = 0; j < DIM; j++)
|
|
{
|
|
if (k1 == i || k2 == j)
|
|
continue;
|
|
temp[k1][k2]->m_pData[i1][j1++]
|
|
= this->m_pData[i][j];
|
|
}
|
|
if (k1 != i)
|
|
i1++;
|
|
}
|
|
}
|
|
}
|
|
bool flagPositive = true;
|
|
for (int k1 = 0; k1 < DIM; k1++)
|
|
{
|
|
flagPositive = ((k1 % 2) == 0);
|
|
for (int k2 = 0; k2 < DIM; k2++)
|
|
{
|
|
if (flagPositive == true)
|
|
{
|
|
cofactor.m_pData[k1][k2]
|
|
= temp[k1][k2]->Determinant();
|
|
flagPositive = false;
|
|
}
|
|
else
|
|
{
|
|
cofactor.m_pData[k1][k2]
|
|
= -temp[k1][k2]->Determinant();
|
|
flagPositive = true;
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < DIM; i++)
|
|
for (int j = 0; j < DIM; j++)
|
|
delete temp[i][j];
|
|
for (int i = 0; i < DIM; i++)
|
|
delete[] temp[i];
|
|
delete[] temp;
|
|
}
|
|
return cofactor;
|
|
}
|
|
CMatrix Adjoint()
|
|
{
|
|
CMatrix cofactor("COF", m_rows, m_cols);
|
|
CMatrix adj("ADJ", m_rows, m_cols);
|
|
if (m_rows != m_cols)
|
|
return adj;
|
|
cofactor = this->CoFactor();
|
|
// adjoint is transpose of a cofactor of a matrix
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
adj.m_pData[j][i] = cofactor.m_pData[i][j];
|
|
}
|
|
}
|
|
return adj;
|
|
}
|
|
CMatrix Transpose()
|
|
{
|
|
CMatrix trans("TR", m_cols, m_rows);
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
trans.m_pData[j][i] = m_pData[i][j];
|
|
}
|
|
}
|
|
return trans;
|
|
}
|
|
CMatrix Inverse()
|
|
{
|
|
CMatrix cofactor("COF", m_rows, m_cols);
|
|
CMatrix inv("INV", m_rows, m_cols);
|
|
if (m_rows != m_cols)
|
|
return inv;
|
|
// to find out Determinant
|
|
double det = Determinant();
|
|
cofactor = this->CoFactor();
|
|
// inv = transpose of cofactor / Determinant
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
inv.m_pData[j][i] = cofactor.m_pData[i][j] / det;
|
|
}
|
|
}
|
|
return inv;
|
|
}
|
|
CMatrix operator +(const CMatrix &other)
|
|
{
|
|
if (this->m_rows != other.m_rows || this->m_cols != other.m_cols)
|
|
{
|
|
std::cout
|
|
<< "Addition could not take place because number of rows and columns are different between the two matrices";
|
|
return *this;
|
|
}
|
|
CMatrix result("", m_rows, m_cols);
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
result.m_pData[i][j] = this->m_pData[i][j]
|
|
+ other.m_pData[i][j];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
CMatrix operator -(const CMatrix &other)
|
|
{
|
|
if (this->m_rows != other.m_rows || this->m_cols != other.m_cols)
|
|
{
|
|
std::cout
|
|
<< "Subtraction could not take place because number of rows and columns are different between the two matrices";
|
|
return *this;
|
|
}
|
|
CMatrix result("", m_rows, m_cols);
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
result.m_pData[i][j] = this->m_pData[i][j]
|
|
- other.m_pData[i][j];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
CMatrix operator *(const CMatrix &other)
|
|
{
|
|
if (this->m_cols != other.m_rows)
|
|
{
|
|
std::cout
|
|
<< "Multiplication could not take place because number of columns of 1st Matrix and number of rows in 2nd Matrix are different";
|
|
return *this;
|
|
}
|
|
CMatrix result("", this->m_rows, other.m_cols);
|
|
for (int i = 0; i < this->m_rows; i++)
|
|
{
|
|
for (int j = 0; j < other.m_cols; j++)
|
|
{
|
|
for (int k = 0; k < this->m_cols; k++)
|
|
{
|
|
result.m_pData[i][j] += this->m_pData[i][k]
|
|
* other.m_pData[k][j];
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
bool operator ==(const CMatrix &other)
|
|
{
|
|
if (this->m_rows != other.m_rows || this->m_cols != other.m_cols)
|
|
{
|
|
std::cout
|
|
<< "Comparision could not take place because number of rows and columns are different between the two matrices";
|
|
return false;
|
|
}
|
|
CMatrix result("", m_rows, m_cols);
|
|
bool bEqual = true;
|
|
for (int i = 0; i < m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m_cols; j++)
|
|
{
|
|
if (this->m_pData[i][j] != other.m_pData[i][j])
|
|
bEqual = false;
|
|
}
|
|
}
|
|
return bEqual;
|
|
}
|
|
friend std::istream& operator >>(std::istream &is, CMatrix &m);
|
|
friend std::ostream& operator <<(std::ostream &os, const CMatrix &m);
|
|
};
|
|
std::istream& operator >>(std::istream &is, CMatrix &m)
|
|
{
|
|
std::cout << "\n\nEnter Input For Matrix : " << m.m_name << " Rows: "
|
|
<< m.m_rows << " Cols: " << m.m_cols << "\n";
|
|
for (int i = 0; i < m.m_rows; i++)
|
|
{
|
|
for (int j = 0; j < m.m_cols; j++)
|
|
{
|
|
std::cout << "Input For Row: " << i + 1 << " Col: " << j + 1
|
|
<< " = ";
|
|
is >> m.m_pData[i][j];
|
|
}
|
|
std::cout << "\n";
|
|
}
|
|
std::cout << "\n";
|
|
return is;
|
|
}
|
|
std::ostream& operator <<(std::ostream &os, const CMatrix &m)
|
|
{
|
|
os << "\n\nMatrix : " << m.m_name << " Rows: " << m.m_rows << " Cols: "
|
|
<< m.m_cols << "\n\n";
|
|
for (int i = 0; i < m.m_rows; i++)
|
|
{
|
|
os << " | ";
|
|
for (int j = 0; j < m.m_cols; j++)
|
|
{
|
|
char buf[32];
|
|
double data = m.m_pData[i][j];
|
|
if (m.m_pData[i][j] > -0.00001 && m.m_pData[i][j] < 0.00001)
|
|
data = 0;
|
|
sprintf(buf, "%10.2lf ", data);
|
|
os << buf;
|
|
}
|
|
os << "|\n";
|
|
}
|
|
os << "\n\n";
|
|
return os;
|
|
}
|
|
#endif
|
|
int main()
|
|
{
|
|
CMatrix a("A", 5, 5);
|
|
//std::cin >> a;
|
|
a.FillSimulatedInput();
|
|
CMatrix aadj = a.Inverse();
|
|
std::cout << a;
|
|
std::cout << aadj;
|
|
CMatrix unit = (a * aadj);
|
|
unit.SetName("A * A-Inv");
|
|
std::cout << unit;
|
|
}
|
|
|
|
/*
|
|
|
|
Enter Input For Matrix :
|
|
A Rows: 5
|
|
Cols: 5
|
|
Input For Row: 1 Col: 1 = 0.294118
|
|
Input For Row: 1 Col: 2 = 0.980392
|
|
Input For Row: 1 Col: 3 = 1.86275
|
|
Input For Row: 1 Col: 4 = 2.84314
|
|
Input For Row: 1 Col: 5 = 3.62745
|
|
|
|
Input For Row: 2 Col: 1 = 2.54902
|
|
Input For Row: 2 Col: 2 = 3.92157
|
|
Input For Row: 2 Col: 3 = 5.09804
|
|
Input For Row: 2 Col: 4 = 7.05882
|
|
Input For Row: 2 Col: 5 = 9.80392
|
|
|
|
Input For Row: 3 Col: 1 = 6.66667
|
|
Input For Row: 3 Col: 2 = 8.92157
|
|
Input For Row: 3 Col: 3 = 10.8824
|
|
Input For Row: 3 Col: 4 = 12.6471
|
|
Input For Row: 3 Col: 5 = 15.3922
|
|
|
|
Input For Row: 4 Col: 1 = 12.0588
|
|
Input For Row: 4 Col: 2 = 15.098
|
|
Input For Row: 4 Col: 3 = 18.1373
|
|
Input For Row: 4 Col: 4 = 20.7843
|
|
Input For Row: 4 Col: 5 = 24.4118
|
|
|
|
Input For Row: 5 Col: 1 = 21.1765
|
|
Input For Row: 5 Col: 2 = 24.7059
|
|
Input For Row: 5 Col: 3 = 27.7451
|
|
Input For Row: 5 Col: 4 = 31.0784
|
|
Input For Row: 5 Col: 5 = 34.3137
|
|
|
|
Matrix : A Rows: 5 Cols: 5
|
|
|
|
| 0.29 0.98 1.86 2.84 3.63 |
|
|
| 2.55 3.92 5.10 7.06 9.80 |
|
|
| 6.67 8.92 10.88 12.65 15.39 |
|
|
| 12.06 15.10 18.14 20.78 24.41 |
|
|
| 21.18 24.71 27.75 31.08 34.31 |
|
|
|
|
Matrix : INV Rows: 5 Cols: 5
|
|
|
|
| -0.93 0.80 -3.74 2.86 -0.49 |
|
|
| 0.37 -0.32 5.35 -4.91 1.14 |
|
|
| -0.78 -0.93 -1.46 2.96 -1.10 |
|
|
| 2.37 -0.10 0.25 -1.65 0.84 |
|
|
| -1.21 0.57 -0.58 0.87 -0.36 |
|
|
|
|
Matrix : A * A-Inv Rows: 5 Cols: 5
|
|
|
|
| 1.00 0.00 0.00 0.00 0.00 |
|
|
| 0.00 1.00 0.00 0.00 0.00 |
|
|
| 0.00 0.00 1.00 0.00 0.00 |
|
|
| 0.00 0.00 0.00 1.00 0.00 |
|
|
| 0.00 0.00 0.00 0.00 1.00 |
|