programming-examples/c++/Numerical_Problems/C++ Perform to a 2D FFT Inplace Given a Complex 2D Array.cpp
2019-11-18 14:44:36 +01:00

70 lines
3.0 KiB
C++

/*This is a C++ Program to perform 2D FFT. A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT) and its inverse. Fourier analysis converts time (or space) to frequency and vice versa; an FFT rapidly computes such transformations by factorizing the DFT matrix into a product of sparse (mostly zero) factors.*/
#include <iostream>
#include <math.h>
using namespace std;
#define PI 3.14159265
int n;
int main(int argc, char **argv)
{
cout << "Enter the size: ";
cin >> n;
double inputData[n][n];
cout << "Enter the 2D elements ";
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> inputData[i][j];
double realOut[n][n];
double imagOut[n][n];
double amplitudeOut[n][n];
int height = n;
int width = n;
// Two outer loops iterate on output data.
for (int yWave = 0; yWave < height; yWave++)
{
for (int xWave = 0; xWave < width; xWave++)
{
// Two inner loops iterate on input data.
for (int ySpace = 0; ySpace < height; ySpace++)
{
for (int xSpace = 0; xSpace < width; xSpace++)
{
// Compute real, imag, and ampltude.
realOut[yWave][xWave] += (inputData[ySpace][xSpace] * cos(
2 * PI * ((1.0 * xWave * xSpace / width) + (1.0
* yWave * ySpace / height)))) / sqrt(
width * height);
imagOut[yWave][xWave] -= (inputData[ySpace][xSpace] * sin(
2 * PI * ((1.0 * xWave * xSpace / width) + (1.0
* yWave * ySpace / height)))) / sqrt(
width * height);
amplitudeOut[yWave][xWave] = sqrt(
realOut[yWave][xWave] * realOut[yWave][xWave]
+ imagOut[yWave][xWave]
* imagOut[yWave][xWave]);
}
cout << realOut[yWave][xWave] << " + " << imagOut[yWave][xWave]
<< " i (" << amplitudeOut[yWave][xWave] << ")\n";
}
}
}
}
/*
Enter the size:
2
Enter the 2D elements
2 3
4 2
2.5 + 0.0 i
5.5 + 0.0 i
-0.5 + -1.8369701987210297E-16 i
0.5 + -3.0616169978683826E-16 i
2.5 + 0.0 i
-0.5 + -3.6739403974420594E-16 i
-0.5 + -1.8369701987210297E-16 i
-1.5 + -1.8369701987210297E-16 i