63 lines
2.1 KiB
Java
63 lines
2.1 KiB
Java
/*
|
||
This is the java implementation of calculating coefficients of the given function performing the Discrete-Fourier Transform. Formula for calculating the coefficient is X(k) = Sum(x(n)*cos(2*PI*k*n/N) – iSum(x(n)*sin(2*PI*k*n/N)) over 0 to N-1
|
||
*/
|
||
|
||
|
||
//This is a sample program to calculate a DFT Coefficients using the formula
|
||
import java.util.Scanner;
|
||
|
||
public class DFT_Coefficient
|
||
{
|
||
double real, img;
|
||
public DFT_Coefficient()
|
||
{
|
||
this.real = 0.0;
|
||
this.img = 0.0;
|
||
}
|
||
public static void main(String args[])
|
||
{
|
||
int N = 10;
|
||
Scanner sc = new Scanner(System.in);
|
||
System.out.println("Calculation DFT Coefficients");
|
||
System.out.println("Enter the coefficient of simple linear funtion:");
|
||
System.out.println("ax + by = c");
|
||
double a = sc.nextDouble();
|
||
double b = sc.nextDouble();
|
||
double c = sc.nextDouble();
|
||
double []function = new double[N];
|
||
for(int i=0; i<N; i++)
|
||
{
|
||
function[i] = (((a*(double)i) + (b*(double)i)) - c);
|
||
//System.out.print( " "+function[i] + " ");
|
||
}
|
||
System.out.println("Enter the max K value: ");
|
||
int k = sc.nextInt();
|
||
double []cos = new double[N];
|
||
double []sin = new double[N];
|
||
for(int i=0; i<N; i++)
|
||
{
|
||
cos[i] = Math.cos((2 * i * k * Math.PI) / N);
|
||
sin[i] = Math.sin((2 * i * k * Math.PI) / N);
|
||
}
|
||
DFT_Coefficient dft_val = new DFT_Coefficient();
|
||
System.out.println("The coefficients are: ");
|
||
for(int i=0; i<N; i++)
|
||
{
|
||
dft_val.real += function[i] * cos[i];
|
||
dft_val.img += function[i] * sin[i];
|
||
}
|
||
System.out.println("("+dft_val.real + ") - " + "("+dft_val.img + " i)");
|
||
sc.close();
|
||
}
|
||
}
|
||
|
||
/*
|
||
Calculation DFT Coefficients
|
||
Enter the coefficient of simple linear funtion:
|
||
ax + by = c
|
||
1 2 3
|
||
Enter the max K value:
|
||
2
|
||
The coefficients are:
|
||
(-15.00000000000001) - (-20.6457288070676 i)
|