programming-examples/java/Graph_Problems_Algorithms/TopologicalSort.java
2019-11-15 12:59:38 +01:00

80 lines
3.1 KiB
Java

package com.jwetherell.algorithms.graph;
import java.util.ArrayList;
import java.util.List;
import com.jwetherell.algorithms.data_structures.Graph;
/**
* In computer science, a topological sort (sometimes abbreviated topsort or
* toposort) or topological ordering of a directed graph is a linear ordering of
* its vertices such that, for every edge uv, u comes before v in the ordering.
*
* https://en.wikipedia.org/wiki/Topological_sorting
*
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class TopologicalSort {
private TopologicalSort() { }
/**
* Performs a topological sort on a directed graph. Returns NULL if a cycle is detected.
*
* Note: This should NOT change the state of the graph parameter.
*
* @param graph
* @return Sorted List of Vertices or NULL if graph has a cycle
*/
public static final List<Graph.Vertex<Integer>> sort(Graph<Integer> graph) {
if (graph == null)
throw new IllegalArgumentException("Graph is NULL.");
if (graph.getType() != Graph.TYPE.DIRECTED)
throw new IllegalArgumentException("Cannot perform a topological sort on a non-directed graph. graph type = "+graph.getType());
// clone to prevent changes the graph parameter's state
final Graph<Integer> clone = new Graph<Integer>(graph);
final List<Graph.Vertex<Integer>> sorted = new ArrayList<Graph.Vertex<Integer>>();
final List<Graph.Vertex<Integer>> noOutgoing = new ArrayList<Graph.Vertex<Integer>>();
final List<Graph.Edge<Integer>> edges = new ArrayList<Graph.Edge<Integer>>();
edges.addAll(clone.getEdges());
// Find all the vertices which have no outgoing edges
for (Graph.Vertex<Integer> v : clone.getVertices()) {
if (v.getEdges().size() == 0)
noOutgoing.add(v);
}
// While we still have vertices which have no outgoing edges
while (noOutgoing.size() > 0) {
final Graph.Vertex<Integer> current = noOutgoing.remove(0);
sorted.add(current);
// Go thru each edge, if it goes to the current vertex then remove it.
int i = 0;
while (i < edges.size()) {
final Graph.Edge<Integer> e = edges.get(i);
final Graph.Vertex<Integer> from = e.getFromVertex();
final Graph.Vertex<Integer> to = e.getToVertex();
// Found an edge to the current vertex, remove it.
if (to.equals(current)) {
edges.remove(e);
// Remove the reciprocal edge
from.getEdges().remove(e);
} else {
i++;
}
// Removed all edges from 'from' vertex, add it to the onOutgoing list
if (from.getEdges().size() == 0)
noOutgoing.add(from);
}
}
// If we have processed all connected vertices and there are edges remaining, graph has multiple connected components.
if (edges.size() > 0)
return null;
return sorted;
}
}