programming-examples/java/Graph_Problems_Algorithms/Java Program to Test Using DFS Whether a Directed Graph is Strongly Connected or Not.java
2019-11-15 12:59:38 +01:00

134 lines
3.4 KiB
Java

import java.util.*;
public class StronglyConnectedGraph
{
private int V;
private int preCount;
private int[] low;
private boolean[] visited;
private List<Integer>[] graph;
private List<List<Integer>> sccComp;
private Stack<Integer> stack;
/** function to get all strongly connected components **/
public List<List<Integer>> getSCComponents(List<Integer>[] graph)
{
V = graph.length;
this.graph = graph;
low = new int[V];
visited = new boolean[V];
stack = new Stack<Integer>();
sccComp = new ArrayList<>();
for (int v = 0; v < V; v++)
if (!visited[v])
dfs(v);
return sccComp;
}
/** function dfs **/
public void dfs(int v)
{
low[v] = preCount++;
visited[v] = true;
stack.push(v);
int min = low[v];
for (int w : graph[v])
{
if (!visited[w])
dfs(w);
if (low[w] < min)
min = low[w];
}
if (min < low[v])
{
low[v] = min;
return;
}
List<Integer> component = new ArrayList<Integer>();
int w;
do
{
w = stack.pop();
component.add(w);
low[w] = V;
}
while (w != v);
sccComp.add(component);
}
@SuppressWarnings("unchecked")
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Enter number of Vertices");
/** number of vertices **/
int V = scan.nextInt();
/** make graph **/
List<Integer>[] g = new List[V];
for (int i = 0; i < V; i++)
g[i] = new ArrayList<Integer>();
/** accept all edges **/
System.out.println("Enter number of edges");
int E = scan.nextInt();
/** all edges **/
System.out.println("Enter the edges in the graph : <from> <to>");
for (int i = 0; i < E; i++)
{
int x = scan.nextInt();
int y = scan.nextInt();
g[x].add(y);
}
StronglyConnectedGraph t = new StronglyConnectedGraph();
System.out.print("The graph is strongly connected? : ");
/** print all strongly connected components **/
List<List<Integer>> scComponents = t.getSCComponents(g);
Iterator<List<Integer>> iterator = scComponents.iterator();
boolean stronglyConnected = true;
while (iterator.hasNext())
{
if (iterator.next().size() <= 1)
{
stronglyConnected = false;
}
}
System.out.println(stronglyConnected);
scan.close();
}
}
/*
Enter number of Vertices
6
Enter number of edges
7
Enter the edges in the graph : <from> <to>
0 1
1 2
1 3
3 4
4 5
5 3
5 2
The graph is strongly connected? : false
Enter number of Vertices
8
Enter number of edges
14
Enter the edges in the graph : <from> <to>
0 1
1 2
2 3
3 2
3 7
7 3
2 6
7 6
5 6
6 5
1 5
4 5
4 0
1 4
The graph is strongly connected? : true