programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Range Tree.java
2019-11-15 12:59:38 +01:00

362 lines
8.9 KiB
Java

/*This is a java program to implement Range Tree. A range tree on a set of 1-dimensional points is a balanced binary search tree on those points. The points stored in the tree are stored in the leaves of the tree; each internal node stores the largest value contained in its left subtree. A range tree on a set of points in d-dimensions is a recursively defined multi-level binary search tree. Each level of the data structure is a binary search tree on one of the d-dimensions. The first level is a binary search tree on the first of the d-coordinates. Each vertex v of this tree contains an associated structure that is a (d-1)-dimensional range tree on the last (d-1)-coordinates of the points stored in the subtree of v.*/
//This is a java program to implement Range Tree
import java.util.Random;
import java.util.Scanner;
class BSTNodes
{
BSTNodes left, right;
int data;
public BSTNodes()
{
left = null;
right = null;
data = 0;
}
public BSTNodes(int n)
{
left = null;
right = null;
data = n;
}
public void setLeft(BSTNodes n)
{
left = n;
}
public void setRight(BSTNodes n)
{
right = n;
}
public BSTNodes getLeft()
{
return left;
}
public BSTNodes getRight()
{
return right;
}
public void setData(int d)
{
data = d;
}
public int getData()
{
return data;
}
}
class BST
{
private BSTNodes root;
public BST()
{
root = null;
}
public boolean isEmpty()
{
return root == null;
}
public void insert(int data)
{
root = insert(root, data);
}
private BSTNodes insert(BSTNodes node, int data)
{
if (node == null)
node = new BSTNodes(data);
else
{
if (data <= node.getData())
node.left = insert(node.left, data);
else
node.right = insert(node.right, data);
}
return node;
}
public void delete(int k)
{
if (isEmpty())
System.out.println("Tree Empty");
else if (search(k) == false)
System.out.println("Sorry " + k + " is not present");
else
{
root = delete(root, k);
System.out.println(k + " deleted from the tree");
}
}
private BSTNodes delete(BSTNodes root, int k)
{
BSTNodes p, p2, n;
if (root.getData() == k)
{
BSTNodes lt, rt;
lt = root.getLeft();
rt = root.getRight();
if (lt == null && rt == null)
return null;
else if (lt == null)
{
p = rt;
return p;
}
else if (rt == null)
{
p = lt;
return p;
}
else
{
p2 = rt;
p = rt;
while (p.getLeft() != null)
p = p.getLeft();
p.setLeft(lt);
return p2;
}
}
if (k < root.getData())
{
n = delete(root.getLeft(), k);
root.setLeft(n);
}
else
{
n = delete(root.getRight(), k);
root.setRight(n);
}
return root;
}
public int countNodes()
{
return countNodes(root);
}
private int countNodes(BSTNodes r)
{
if (r == null)
return 0;
else
{
int l = 1;
l += countNodes(r.getLeft());
l += countNodes(r.getRight());
return l;
}
}
public boolean search(int val)
{
return search(root, val);
}
private boolean search(BSTNodes r, int val)
{
boolean found = false;
while ((r != null) && !found)
{
int rval = r.getData();
if (val < rval)
r = r.getLeft();
else if (val > rval)
r = r.getRight();
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
public void inorder()
{
inorder(root);
}
private void inorder(BSTNodes r)
{
if (r != null)
{
inorder(r.getLeft());
System.out.print(r.getData() + " ");
inorder(r.getRight());
}
}
public void preorder()
{
preorder(root);
}
private void preorder(BSTNodes r)
{
if (r != null)
{
System.out.print(r.getData() + " ");
preorder(r.getLeft());
preorder(r.getRight());
}
}
public void postorder()
{
postorder(root);
}
private void postorder(BSTNodes r)
{
if (r != null)
{
postorder(r.getLeft());
postorder(r.getRight());
System.out.print(r.getData() + " ");
}
}
}
public class RangeTree
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
BST bst = new BST();
System.out
.println("Range Tree in One Dimensional points(Binary Search Tree)\n");
Random random = new Random();
int N = 10;
for (int i = 0; i < N; i++)
bst.insert(Math.abs(random.nextInt(100)));
char ch;
do
{
System.out.print("Operations\n");
System.out.println("1. Print Tree ");
System.out.println("2. Delete");
System.out.println("3. Search");
System.out.println("4. Count Nodes");
System.out.println("5. Check Empty");
int choice = scan.nextInt();
switch (choice)
{
case 1:
System.out.print("\nPost order : ");
bst.postorder();
System.out.print("\nPre order : ");
bst.preorder();
System.out.print("\nIn order : ");
bst.inorder();
break;
case 2:
System.out.println("Enter integer element to delete");
bst.delete(scan.nextInt());
break;
case 3:
System.out.println("Enter integer element to search");
System.out.println("Search result : "
+ bst.search(scan.nextInt()));
break;
case 4:
System.out.println("Nodes = " + bst.countNodes());
break;
case 5:
System.out.println("Empty status = " + bst.isEmpty());
break;
default:
System.out.println("Wrong Entry \n ");
break;
}
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
}
while (ch == 'Y' || ch == 'y');
scan.close();
}
}
/*
Range Tree in One Dimensional points(Binary Search Tree)
Operations
1. Print Tree
2. Delete
3. Search
4. Count Nodes
5. Check Empty
1
Post order : 15 14 12 29 49 47 22 92 91 7
Pre order : 7 91 22 12 14 15 47 29 49 92
In order : 7 12 14 15 22 29 47 49 91 92
Do you want to continue (Type y or n)
y
Operations
1. Print Tree
2. Delete
3. Search
4. Count Nodes
5. Check Empty
2
Enter integer element to delete
7
7 deleted from the tree
Do you want to continue (Type y or n)
y
Operations
1. Print Tree
2. Delete
3. Search
4. Count Nodes
5. Check Empty
3
Enter integer element to search
91
Search result : true
Do you want to continue (Type y or n)
y
Operations
1. Print Tree
2. Delete
3. Search
4. Count Nodes
5. Check Empty
4
Nodes = 9
Do you want to continue (Type y or n)
y
Operations
1. Print Tree
2. Delete
3. Search
4. Count Nodes
5. Check Empty
5
Empty status = false
Do you want to continue (Type y or n)
n