162 lines
5.7 KiB
Java
162 lines
5.7 KiB
Java
/*This Java program,to Implement Dijkstra’s algorithm using Priority Queue.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
|
||
|
||
import java.util.HashSet;
|
||
import java.util.InputMismatchException;
|
||
import java.util.PriorityQueue;
|
||
import java.util.Scanner;
|
||
import java.util.Set;
|
||
|
||
public class DijkstraPriorityQueue
|
||
{
|
||
private int distances[];
|
||
private Set<Integer> settled;
|
||
private PriorityQueue<Node> priorityQueue;
|
||
private int number_of_nodes;
|
||
private int adjacencyMatrix[][];
|
||
|
||
public DijkstraPriorityQueue(int number_of_nodes)
|
||
{
|
||
this.number_of_nodes = number_of_nodes;
|
||
distances = new int[number_of_nodes + 1];
|
||
settled = new HashSet<Integer>();
|
||
priorityQueue = new PriorityQueue<Node>(number_of_nodes,new Node());
|
||
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
|
||
}
|
||
|
||
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
|
||
{
|
||
int evaluationNode;
|
||
for (int i = 1; i <= number_of_nodes; i++)
|
||
for (int j = 1; j <= number_of_nodes; j++)
|
||
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
|
||
for (int i = 1; i <= number_of_nodes; i++)
|
||
{
|
||
distances[i] = Integer.MAX_VALUE;
|
||
}
|
||
priorityQueue.add(new Node(source, 0));
|
||
distances[source] = 0;
|
||
while (!priorityQueue.isEmpty())
|
||
{
|
||
evaluationNode = getNodeWithMinimumDistanceFromPriorityQueue();
|
||
settled.add(evaluationNode);
|
||
evaluateNeighbours(evaluationNode);
|
||
}
|
||
}
|
||
|
||
private int getNodeWithMinimumDistanceFromPriorityQueue()
|
||
{
|
||
int node = priorityQueue.remove();
|
||
return node;
|
||
}
|
||
|
||
private void evaluateNeighbours(int evaluationNode)
|
||
{
|
||
int edgeDistance = -1;
|
||
int newDistance = -1;
|
||
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
|
||
{
|
||
if (!settled.contains(destinationNode))
|
||
{
|
||
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
|
||
{
|
||
edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
|
||
newDistance = distances[evaluationNode] + edgeDistance;
|
||
if (newDistance < distances[destinationNode])
|
||
{
|
||
distances[destinationNode] = newDistance;
|
||
}
|
||
priorityQueue.add(new Node(destinationNode,distances[destinationNode]));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
public static void main(String... arg)
|
||
{
|
||
int adjacency_matrix[][];
|
||
int number_of_vertices;
|
||
int source = 0;
|
||
Scanner scan = new Scanner(System.in);
|
||
try
|
||
{
|
||
System.out.println("Enter the number of vertices");
|
||
number_of_vertices = scan.nextInt();
|
||
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
|
||
System.out.println("Enter the Weighted Matrix for the graph");
|
||
for (int i = 1; i <= number_of_vertices; i++)
|
||
{
|
||
for (int j = 1; j <= number_of_vertices; j++)
|
||
{
|
||
adjacency_matrix[i][j] = scan.nextInt();
|
||
if (i == j)
|
||
{
|
||
adjacency_matrix[i][j] = 0;
|
||
continue;
|
||
}
|
||
if (adjacency_matrix[i][j] == 0)
|
||
{
|
||
adjacency_matrix[i][j] = Integer.MAX_VALUE;
|
||
}
|
||
}
|
||
}
|
||
System.out.println("Enter the source ");
|
||
source = scan.nextInt();
|
||
DijkstraPriorityQueue dijkstrasPriorityQueue = new DijkstraPriorityQueue(number_of_vertices);
|
||
dijkstrasPriorityQueue.dijkstra_algorithm(adjacency_matrix, source);
|
||
System.out.println("The Shorted Path to all nodes are ");
|
||
for (int i = 1; i <= dijkstrasPriorityQueue.distances.length - 1; i++)
|
||
{
|
||
System.out.println(source + " to " + i + " is " + dijkstrasPriorityQueue.distances[i]);
|
||
}
|
||
}
|
||
catch (InputMismatchException inputMismatch)
|
||
{
|
||
System.out.println("Wrong Input Format");
|
||
}
|
||
scan.close();
|
||
}
|
||
}
|
||
class Node implements Comparator<Node>
|
||
{
|
||
public int node;
|
||
public int cost;
|
||
|
||
public Node()
|
||
{
|
||
}
|
||
|
||
public Node(int node, int cost)
|
||
{
|
||
this.node = node;
|
||
this.cost = cost;
|
||
}
|
||
|
||
@Override
|
||
public int compare(Node node1, Node node2)
|
||
{
|
||
if (node1.cost < node2.cost)
|
||
return -1;
|
||
if (node1.cost > node2.cost)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
|
||
Enter the number of vertices
|
||
5
|
||
Enter the Weighted Matrix for the graph
|
||
0 9 6 5 3
|
||
0 0 0 0 0
|
||
0 2 0 4 0
|
||
0 0 0 0 0
|
||
0 0 0 0 0
|
||
Enter the source
|
||
1
|
||
The Shorted Path to all nodes are
|
||
1 to 1 is 0
|
||
1 to 2 is 8
|
||
1 to 3 is 6
|
||
1 to 4 is 5
|
||
1 to 5 is 3 |