programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Dijkstra’s Algorithm using Priority Queue.java
2019-11-15 12:59:38 +01:00

162 lines
5.7 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*This Java program,to Implement Dijkstras algorithm using Priority Queue.Dijkstras algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.*/
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.util.Set;
public class DijkstraPriorityQueue
{
private int distances[];
private Set<Integer> settled;
private PriorityQueue<Node> priorityQueue;
private int number_of_nodes;
private int adjacencyMatrix[][];
public DijkstraPriorityQueue(int number_of_nodes)
{
this.number_of_nodes = number_of_nodes;
distances = new int[number_of_nodes + 1];
settled = new HashSet<Integer>();
priorityQueue = new PriorityQueue<Node>(number_of_nodes,new Node());
adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
}
public void dijkstra_algorithm(int adjacency_matrix[][], int source)
{
int evaluationNode;
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacencyMatrix[i][j] = adjacency_matrix[i][j];
for (int i = 1; i <= number_of_nodes; i++)
{
distances[i] = Integer.MAX_VALUE;
}
priorityQueue.add(new Node(source, 0));
distances[source] = 0;
while (!priorityQueue.isEmpty())
{
evaluationNode = getNodeWithMinimumDistanceFromPriorityQueue();
settled.add(evaluationNode);
evaluateNeighbours(evaluationNode);
}
}
private int getNodeWithMinimumDistanceFromPriorityQueue()
{
int node = priorityQueue.remove();
return node;
}
private void evaluateNeighbours(int evaluationNode)
{
int edgeDistance = -1;
int newDistance = -1;
for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
{
if (!settled.contains(destinationNode))
{
if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
{
edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
newDistance = distances[evaluationNode] + edgeDistance;
if (newDistance < distances[destinationNode])
{
distances[destinationNode] = newDistance;
}
priorityQueue.add(new Node(destinationNode,distances[destinationNode]));
}
}
}
}
public static void main(String... arg)
{
int adjacency_matrix[][];
int number_of_vertices;
int source = 0;
Scanner scan = new Scanner(System.in);
try
{
System.out.println("Enter the number of vertices");
number_of_vertices = scan.nextInt();
adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
System.out.println("Enter the Weighted Matrix for the graph");
for (int i = 1; i <= number_of_vertices; i++)
{
for (int j = 1; j <= number_of_vertices; j++)
{
adjacency_matrix[i][j] = scan.nextInt();
if (i == j)
{
adjacency_matrix[i][j] = 0;
continue;
}
if (adjacency_matrix[i][j] == 0)
{
adjacency_matrix[i][j] = Integer.MAX_VALUE;
}
}
}
System.out.println("Enter the source ");
source = scan.nextInt();
DijkstraPriorityQueue dijkstrasPriorityQueue = new DijkstraPriorityQueue(number_of_vertices);
dijkstrasPriorityQueue.dijkstra_algorithm(adjacency_matrix, source);
System.out.println("The Shorted Path to all nodes are ");
for (int i = 1; i <= dijkstrasPriorityQueue.distances.length - 1; i++)
{
System.out.println(source + " to " + i + " is " + dijkstrasPriorityQueue.distances[i]);
}
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input Format");
}
scan.close();
}
}
class Node implements Comparator<Node>
{
public int node;
public int cost;
public Node()
{
}
public Node(int node, int cost)
{
this.node = node;
this.cost = cost;
}
@Override
public int compare(Node node1, Node node2)
{
if (node1.cost < node2.cost)
return -1;
if (node1.cost > node2.cost)
return 1;
return 0;
}
}
/*
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 9 6 5 3
0 0 0 0 0
0 2 0 4 0
0 0 0 0 0
0 0 0 0 0
Enter the source
1
The Shorted Path to all nodes are
1 to 1 is 0
1 to 2 is 8
1 to 3 is 6
1 to 4 is 5
1 to 5 is 3