programming-examples/java/Graph_Problems_Algorithms/Java Program to Implement Depth-limited Search.java
2019-11-15 12:59:38 +01:00

100 lines
4.0 KiB
Java

/*This Java program,Implements Depth Limited Search.Like the normal depth-first search, depth-limited search is an uninformed search. It works exactly like depth-first search, but avoids its drawbacks regarding completeness by imposing a maximum limit on the depth of the search. Even if the search could still expand a vertex beyond that depth, it will not do so and thereby it will not follow infinitely deep paths or get stuck in cycles. Therefore depth-limited search will find a solution if it is within the depth limit, which guarantees at least completeness on all graphs.*/
import java.util.InputMismatchException;
import java.util.Scanner;
import java.util.Stack;
public class DepthLimitedSearch
{
private Stack<Integer> stack;
private int numberOfNodes;
private static final int MAX_DEPTH = 3;
public DepthLimitedSearch(int numberOfNodes)
{
this.numberOfNodes = numberOfNodes;
this.stack = new Stack<Integer>();
}
public void depthLimitedSearch(int adjacencyMatrix[][], int source)
{
int visited[] = new int[numberOfNodes + 1];
int element, destination;
int depth = 0;
System.out.println(source + " at depth " + depth);
stack.push(source);
visited[source] = 1;
depth = 0;
while (!stack.isEmpty())
{
element = stack.peek();
destination = element;
while (destination <= numberOfNodes)
{
if (depth < MAX_DEPTH)
{
if (adjacencyMatrix[element][destination] == 1 && visited[destination] == 0)
{
stack.push(destination);
visited[destination] = 1;
depth++;
System.out.println(destination + " at depth " + depth);
element = destination;
destination = 1;
}
}
else
{
return;
}
destination++;
}
stack.pop();
depth--;
}
}
public static void main(String... arg)
{
int number_of_nodes, source;
Scanner scanner = null;
try
{
System.out.println("Enter the number of nodes in the graph");
scanner = new Scanner(System.in);
number_of_nodes = scanner.nextInt();
int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1];
System.out.println("Enter the adjacency matrix");
for (int i = 1; i <= number_of_nodes; i++)
for (int j = 1; j <= number_of_nodes; j++)
adjacency_matrix[i][j] = scanner.nextInt();
System.out.println("Enter the source for the graph");
source = scanner.nextInt();
System.out.println("The Depth limited Search Traversal of Max Depth 3 is");
DepthLimitedSearch depthLimitedSearch = new DepthLimitedSearch(number_of_nodes);
depthLimitedSearch.depthLimitedSearch(adjacency_matrix, source);
}
catch (InputMismatchException inputMismatch)
{
System.out.println("Wrong Input format");
}
scanner.close();
}
}
/*
Enter the number of nodes in the graph
5
Enter the adjacency matrix
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
Enter the source for the graph
1
The Depth limited Search Traversal of Max Depth 3 for the graph is given by
1 at depth 0
2 at depth 1
3 at depth 2
4 at depth 3