112 lines
4.2 KiB
Java
112 lines
4.2 KiB
Java
/*This Java program is to check whether graph is bipartite using bfs. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets and such that every edge connects a vertex in to one in that is, and are each independent sets. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.*/
|
|
|
|
import java.util.InputMismatchException;
|
|
import java.util.LinkedList;
|
|
import java.util.Queue;
|
|
import java.util.Scanner;
|
|
|
|
public class BipartiteBfs
|
|
{
|
|
private int numberOfVertices;
|
|
private Queue<Integer> queue;
|
|
|
|
public static final int NO_COLOR = 0;
|
|
public static final int RED = 1;
|
|
public static final int BLUE = 2;
|
|
|
|
public BipartiteBfs(int numberOfVertices)
|
|
{
|
|
this.numberOfVertices = numberOfVertices;
|
|
queue = new LinkedList<Integer>();
|
|
}
|
|
|
|
public boolean isBipartite(int adjacencyMatrix[][], int source)
|
|
{
|
|
int[] colored = new int[numberOfVertices + 1];
|
|
for (int vertex = 1; vertex <= numberOfVertices; vertex++)
|
|
{
|
|
colored[vertex] = NO_COLOR;
|
|
}
|
|
colored[source] = RED;
|
|
queue.add(source);
|
|
int element, neighbour;
|
|
while (!queue.isEmpty())
|
|
{
|
|
element = queue.remove();
|
|
neighbour = 1;
|
|
while (neighbour <= numberOfVertices)
|
|
{
|
|
if (adjacencyMatrix[element][neighbour] == 1 && colored[element]== colored[neighbour])
|
|
{
|
|
return false;
|
|
}
|
|
if (adjacencyMatrix[element][neighbour] == 1 && colored[neighbour]== NO_COLOR)
|
|
{
|
|
colored[neighbour] = (colored[element] == RED ) ? BLUE :RED;
|
|
queue.add(neighbour);
|
|
}
|
|
neighbour++;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public static void main(String... arg)
|
|
{
|
|
int number_of_nodes, source;
|
|
Scanner scanner = null;
|
|
try
|
|
{
|
|
System.out.println("Enter the number of nodes in the graph");
|
|
scanner = new Scanner(System.in);
|
|
number_of_nodes = scanner.nextInt();
|
|
int adjacency_matrix[][] = new int[number_of_nodes + 1][number_of_nodes + 1];
|
|
System.out.println("Enter the adjacency matrix");
|
|
for (int i = 1; i <= number_of_nodes; i++)
|
|
{
|
|
for (int j = 1; j <= number_of_nodes; j++)
|
|
{
|
|
adjacency_matrix[i][j] = scanner.nextInt();
|
|
}
|
|
}
|
|
for (int i = 1; i <= number_of_nodes; i++)
|
|
{
|
|
for (int j = 1; j <= number_of_nodes; j++)
|
|
{
|
|
if(adjacency_matrix[i][j] == 1 && adjacency_matrix[j][i] == 0)
|
|
{
|
|
adjacency_matrix[j][i] = 1;
|
|
}
|
|
}
|
|
}
|
|
System.out.println("Enter the source for the graph");
|
|
source = scanner.nextInt();
|
|
BipartiteBfs bipartiteBfs = new BipartiteBfs(number_of_nodes);
|
|
if (bipartiteBfs.isBipartite(adjacency_matrix, source))
|
|
{
|
|
System.out.println("The given graph is bipartite");
|
|
}
|
|
else
|
|
{
|
|
System.out.println("The given graph is not bipartite");
|
|
}
|
|
}
|
|
catch (InputMismatchException inputMismatch)
|
|
{
|
|
System.out.println("Wrong Input format");
|
|
}
|
|
scanner.close();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Enter the number of nodes in the graph
|
|
4
|
|
Enter the adjacency matrix
|
|
0 1 0 1
|
|
1 0 1 0
|
|
0 1 0 1
|
|
1 0 1 0
|
|
Enter the source for the graph
|
|
1
|
|
The given graph is bipartite |