146 lines
6.6 KiB
Java
146 lines
6.6 KiB
Java
package com.jwetherell.algorithms.graph;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Collection;
|
|
import java.util.HashMap;
|
|
import java.util.List;
|
|
import java.util.Map;
|
|
import java.util.PriorityQueue;
|
|
import java.util.Queue;
|
|
|
|
import com.jwetherell.algorithms.data_structures.Graph;
|
|
|
|
/**
|
|
* Dijkstra's shortest path. Only works on non-negative path weights. Returns a
|
|
* tuple of total cost of shortest path and the path.
|
|
*
|
|
* Worst case: O(|E| + |V| log |V|)
|
|
*
|
|
* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
|
*
|
|
* @author Justin Wetherell <phishman3579@gmail.com>
|
|
*/
|
|
public class Dijkstra {
|
|
|
|
private Dijkstra() { }
|
|
|
|
public static Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> getShortestPaths(Graph<Integer> graph, Graph.Vertex<Integer> start) {
|
|
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
|
|
final Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs = new HashMap<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>>();
|
|
|
|
getShortestPath(graph, start, null, paths, costs);
|
|
|
|
final Map<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>> map = new HashMap<Graph.Vertex<Integer>, Graph.CostPathPair<Integer>>();
|
|
for (Graph.CostVertexPair<Integer> pair : costs.values()) {
|
|
int cost = pair.getCost();
|
|
Graph.Vertex<Integer> vertex = pair.getVertex();
|
|
List<Graph.Edge<Integer>> path = paths.get(vertex);
|
|
map.put(vertex, new Graph.CostPathPair<Integer>(cost, path));
|
|
}
|
|
return map;
|
|
}
|
|
|
|
public static Graph.CostPathPair<Integer> getShortestPath(Graph<Integer> graph, Graph.Vertex<Integer> start, Graph.Vertex<Integer> end) {
|
|
if (graph == null)
|
|
throw (new NullPointerException("Graph must be non-NULL."));
|
|
|
|
// Dijkstra's algorithm only works on positive cost graphs
|
|
final boolean hasNegativeEdge = checkForNegativeEdges(graph.getVertices());
|
|
if (hasNegativeEdge)
|
|
throw (new IllegalArgumentException("Negative cost Edges are not allowed."));
|
|
|
|
final Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths = new HashMap<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>>();
|
|
final Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs = new HashMap<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>>();
|
|
return getShortestPath(graph, start, end, paths, costs);
|
|
}
|
|
|
|
private static Graph.CostPathPair<Integer> getShortestPath(Graph<Integer> graph,
|
|
Graph.Vertex<Integer> start, Graph.Vertex<Integer> end,
|
|
Map<Graph.Vertex<Integer>, List<Graph.Edge<Integer>>> paths,
|
|
Map<Graph.Vertex<Integer>, Graph.CostVertexPair<Integer>> costs) {
|
|
if (graph == null)
|
|
throw (new NullPointerException("Graph must be non-NULL."));
|
|
if (start == null)
|
|
throw (new NullPointerException("start must be non-NULL."));
|
|
|
|
// Dijkstra's algorithm only works on positive cost graphs
|
|
boolean hasNegativeEdge = checkForNegativeEdges(graph.getVertices());
|
|
if (hasNegativeEdge)
|
|
throw (new IllegalArgumentException("Negative cost Edges are not allowed."));
|
|
|
|
for (Graph.Vertex<Integer> v : graph.getVertices())
|
|
paths.put(v, new ArrayList<Graph.Edge<Integer>>());
|
|
|
|
for (Graph.Vertex<Integer> v : graph.getVertices()) {
|
|
if (v.equals(start))
|
|
costs.put(v, new Graph.CostVertexPair<Integer>(0, v));
|
|
else
|
|
costs.put(v, new Graph.CostVertexPair<Integer>(Integer.MAX_VALUE, v));
|
|
}
|
|
|
|
final Queue<Graph.CostVertexPair<Integer>> unvisited = new PriorityQueue<Graph.CostVertexPair<Integer>>();
|
|
unvisited.add(costs.get(start));
|
|
|
|
while (!unvisited.isEmpty()) {
|
|
final Graph.CostVertexPair<Integer> pair = unvisited.remove();
|
|
final Graph.Vertex<Integer> vertex = pair.getVertex();
|
|
|
|
// Compute costs from current vertex to all reachable vertices which haven't been visited
|
|
for (Graph.Edge<Integer> e : vertex.getEdges()) {
|
|
final Graph.CostVertexPair<Integer> toPair = costs.get(e.getToVertex()); // O(1)
|
|
final Graph.CostVertexPair<Integer> lowestCostToThisVertex = costs.get(vertex); // O(1)
|
|
final int cost = lowestCostToThisVertex.getCost() + e.getCost();
|
|
if (toPair.getCost() == Integer.MAX_VALUE) {
|
|
// Haven't seen this vertex yet
|
|
|
|
// Need to remove the pair and re-insert, so the priority queue keeps it's invariants
|
|
unvisited.remove(toPair); // O(n)
|
|
toPair.setCost(cost);
|
|
unvisited.add(toPair); // O(log n)
|
|
|
|
// Update the paths
|
|
List<Graph.Edge<Integer>> set = paths.get(e.getToVertex()); // O(log n)
|
|
set.addAll(paths.get(e.getFromVertex())); // O(log n)
|
|
set.add(e);
|
|
} else if (cost < toPair.getCost()) {
|
|
// Found a shorter path to a reachable vertex
|
|
|
|
// Need to remove the pair and re-insert, so the priority queue keeps it's invariants
|
|
unvisited.remove(toPair); // O(n)
|
|
toPair.setCost(cost);
|
|
unvisited.add(toPair); // O(log n)
|
|
|
|
// Update the paths
|
|
List<Graph.Edge<Integer>> set = paths.get(e.getToVertex()); // O(log n)
|
|
set.clear();
|
|
set.addAll(paths.get(e.getFromVertex())); // O(log n)
|
|
set.add(e);
|
|
}
|
|
}
|
|
|
|
// Termination conditions
|
|
if (end != null && vertex.equals(end)) {
|
|
// We are looking for shortest path to a specific vertex, we found it.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (end != null) {
|
|
final Graph.CostVertexPair<Integer> pair = costs.get(end);
|
|
final List<Graph.Edge<Integer>> set = paths.get(end);
|
|
return (new Graph.CostPathPair<Integer>(pair.getCost(), set));
|
|
}
|
|
return null;
|
|
}
|
|
|
|
private static boolean checkForNegativeEdges(Collection<Graph.Vertex<Integer>> vertitices) {
|
|
for (Graph.Vertex<Integer> v : vertitices) {
|
|
for (Graph.Edge<Integer> e : v.getEdges()) {
|
|
if (e.getCost() < 0)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|