programming-examples/java/Data_Structures/Java Program to Implement Max Heap.java
2019-11-15 12:59:38 +01:00

134 lines
3.7 KiB
Java

/*This Java program is to implement max heap. A Heap data structure is a Tree based data structure that satisfies the HEAP Property “If A is a parent node of B then key(A) is ordered with respect to key(B) with the same ordering applying across the heap.”
So in a Min Heap this property will be “If A is a parent node of B then key(A) is less than key(B) with the same ordering applying across the heap.” and in a max heap the key(A) will be greater than Key(B).*/
public class MaxHeap
{
private int[] Heap;
private int size;
private int maxsize;
private static final int FRONT = 1;
public MaxHeap(int maxsize)
{
this.maxsize = maxsize;
this.size = 0;
Heap = new int[this.maxsize + 1];
Heap[0] = Integer.MAX_VALUE;
}
private int parent(int pos)
{
return pos / 2;
}
private int leftChild(int pos)
{
return (2 * pos);
}
private int rightChild(int pos)
{
return (2 * pos) + 1;
}
private boolean isLeaf(int pos)
{
if (pos >= (size / 2) && pos <= size)
{
return true;
}
return false;
}
private void swap(int fpos,int spos)
{
int tmp;
tmp = Heap[fpos];
Heap[fpos] = Heap[spos];
Heap[spos] = tmp;
}
private void maxHeapify(int pos)
{
if (!isLeaf(pos))
{
if ( Heap[pos] < Heap[leftChild(pos)] || Heap[pos] < Heap[rightChild(pos)])
{
if (Heap[leftChild(pos)] > Heap[rightChild(pos)])
{
swap(pos, leftChild(pos));
maxHeapify(leftChild(pos));
}
else
{
swap(pos, rightChild(pos));
maxHeapify(rightChild(pos));
}
}
}
}
public void insert(int element)
{
Heap[++size] = element;
int current = size;
while(Heap[current] > Heap[parent(current)])
{
swap(current,parent(current));
current = parent(current);
}
}
public void print()
{
for (int i = 1; i <= size / 2; i++ )
{
System.out.print(" PARENT : " + Heap[i] + " LEFT CHILD : " + Heap[2*i]
+ " RIGHT CHILD :" + Heap[2 * i + 1]);
System.out.println();
}
}
public void maxHeap()
{
for (int pos = (size / 2); pos >= 1; pos--)
{
maxHeapify(pos);
}
}
public int remove()
{
int popped = Heap[FRONT];
Heap[FRONT] = Heap[size--];
maxHeapify(FRONT);
return popped;
}
public static void main(String...arg)
{
System.out.println("The Max Heap is ");
MaxHeap maxHeap = new MaxHeap(15);
maxHeap.insert(5);
maxHeap.insert(3);
maxHeap.insert(17);
maxHeap.insert(10);
maxHeap.insert(84);
maxHeap.insert(19);
maxHeap.insert(6);
maxHeap.insert(22);
maxHeap.insert(9);
maxHeap.maxHeap();
maxHeap.print();
System.out.println("The max val is " + maxHeap.remove());
}
}
/*
The Max Heap is
PARENT : 84 LEFT CHILD : 22 RIGHT CHILD :19
PARENT : 22 LEFT CHILD : 17 RIGHT CHILD :10
PARENT : 19 LEFT CHILD : 5 RIGHT CHILD :6
PARENT : 17 LEFT CHILD : 3 RIGHT CHILD :9
The max val is 84