85 lines
2.2 KiB
Java
85 lines
2.2 KiB
Java
|
|
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac GaussianElimination.java
|
|
* Execution: java GaussianElimination
|
|
*
|
|
* Gaussian elimination with partial pivoting.
|
|
*
|
|
* % java GaussianElimination
|
|
* -1.0
|
|
* 2.0
|
|
* 2.0
|
|
*
|
|
*************************************************************************/
|
|
|
|
public class GaussianElimination {
|
|
private static final double EPSILON = 1e-10;
|
|
|
|
// Gaussian elimination with partial pivoting
|
|
public static double[] lsolve(double[][] A, double[] b) {
|
|
int N = b.length;
|
|
|
|
for (int p = 0; p < N; p++) {
|
|
|
|
// find pivot row and swap
|
|
int max = p;
|
|
for (int i = p + 1; i < N; i++) {
|
|
if (Math.abs(A[i][p]) > Math.abs(A[max][p])) {
|
|
max = i;
|
|
}
|
|
}
|
|
double[] temp = A[p]; A[p] = A[max]; A[max] = temp;
|
|
double t = b[p]; b[p] = b[max]; b[max] = t;
|
|
|
|
// singular or nearly singular
|
|
if (Math.abs(A[p][p]) <= EPSILON) {
|
|
throw new ArithmeticException("Matrix is singular or nearly singular");
|
|
}
|
|
|
|
// pivot within A and b
|
|
for (int i = p + 1; i < N; i++) {
|
|
double alpha = A[i][p] / A[p][p];
|
|
b[i] -= alpha * b[p];
|
|
for (int j = p; j < N; j++) {
|
|
A[i][j] -= alpha * A[p][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// back substitution
|
|
double[] x = new double[N];
|
|
for (int i = N - 1; i >= 0; i--) {
|
|
double sum = 0.0;
|
|
for (int j = i + 1; j < N; j++) {
|
|
sum += A[i][j] * x[j];
|
|
}
|
|
x[i] = (b[i] - sum) / A[i][i];
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
// sample client
|
|
public static void main(String[] args) {
|
|
int N = 3;
|
|
double[][] A = {
|
|
{ 0, 1, 1 },
|
|
{ 2, 4, -2 },
|
|
{ 0, 3, 15 }
|
|
};
|
|
double[] b = { 4, 2, 36 };
|
|
double[] x = lsolve(A, b);
|
|
|
|
|
|
// print results
|
|
for (int i = 0; i < N; i++) {
|
|
StdOut.println(x[i]);
|
|
}
|
|
|
|
}
|
|
|
|
}
|