196 lines
6.5 KiB
Java
196 lines
6.5 KiB
Java
|
|
|
|
import edu.princeton.cs.introcs.In;
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac BoruvkaMST.java
|
|
* Execution: java BoruvkaMST filename.txt
|
|
* Dependencies: EdgeWeightedGraph.java Edge.java Bag.java
|
|
* UF.java In.java StdOut.java
|
|
* Data files: http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
|
|
* http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
|
|
* http://algs4.cs.princeton.edu/43mst/largeEWG.txt
|
|
*
|
|
* Compute a minimum spanning forest using Boruvka's algorithm.
|
|
*
|
|
* % java BoruvkaMST tinyEWG.txt
|
|
* 0-2 0.26000
|
|
* 6-2 0.40000
|
|
* 5-7 0.28000
|
|
* 4-5 0.35000
|
|
* 2-3 0.17000
|
|
* 1-7 0.19000
|
|
* 0-7 0.16000
|
|
* 1.81000
|
|
*
|
|
*************************************************************************/
|
|
|
|
/**
|
|
* The BoruvkaMST class represents a data type for computing a
|
|
* minimum spanning tree in an edge-weighted graph.
|
|
* The edge weights can be positive, zero, or negative and need not
|
|
* be distinct. If the graph is not connected, it computes a minimum
|
|
* spanning forest , which is the union of minimum spanning trees
|
|
* in each connected component. The weight() method returns the
|
|
* weight of a minimum spanning tree and the edges() method
|
|
* returns its edges.
|
|
*
|
|
* This implementation uses Boruvka's algorithm and the union-find
|
|
* data type.
|
|
* The constructor takes time proportional to E log V
|
|
* and extra space (not including the graph) proportional to V ,
|
|
* where V is the number of vertices and E is the number of edges.
|
|
* Afterwards, the weight() method takes constant time
|
|
* and the edges() method takes time proportional to V .
|
|
*
|
|
* For additional documentation, see <a href="/algs4/44sp">Section 4.4</a> of
|
|
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
|
|
* For alternate implementations, see {@link LazyPrimMST}, {@link PrimMST},
|
|
* and {@link KruskalMST}.
|
|
*
|
|
* @author Robert Sedgewick
|
|
* @author Kevin Wayne
|
|
*/
|
|
public class BoruvkaMST {
|
|
private Bag<Edge> mst = new Bag<Edge>(); // edges in MST
|
|
private double weight; // weight of MST
|
|
|
|
/**
|
|
* Compute a minimum spanning tree (or forest) of an edge-weighted graph.
|
|
* @param G the edge-weighted graph
|
|
*/
|
|
public BoruvkaMST(EdgeWeightedGraph G) {
|
|
UF uf = new UF(G.V());
|
|
|
|
// repeat at most log V times or until we have V-1 edges
|
|
for (int t = 1; t < G.V() && mst.size() < G.V() - 1; t = t + t) {
|
|
|
|
// foreach tree in forest, find closest edge
|
|
// if edge weights are equal, ties are broken in favor of first edge in G.edges()
|
|
Edge[] closest = new Edge[G.V()];
|
|
for (Edge e : G.edges()) {
|
|
int v = e.either(), w = e.other(v);
|
|
int i = uf.find(v), j = uf.find(w);
|
|
if (i == j) continue; // same tree
|
|
if (closest[i] == null || less(e, closest[i])) closest[i] = e;
|
|
if (closest[j] == null || less(e, closest[j])) closest[j] = e;
|
|
}
|
|
|
|
// add newly discovered edges to MST
|
|
for (int i = 0; i < G.V(); i++) {
|
|
Edge e = closest[i];
|
|
if (e != null) {
|
|
int v = e.either(), w = e.other(v);
|
|
// don't add the same edge twice
|
|
if (!uf.connected(v, w)) {
|
|
mst.add(e);
|
|
weight += e.weight();
|
|
uf.union(v, w);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// check optimality conditions
|
|
assert check(G);
|
|
}
|
|
|
|
/**
|
|
* Returns the edges in a minimum spanning tree (or forest).
|
|
* @return the edges in a minimum spanning tree (or forest) as
|
|
* an iterable of edges
|
|
*/
|
|
public Iterable<Edge> edges() {
|
|
return mst;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns the sum of the edge weights in a minimum spanning tree (or forest).
|
|
* @return the sum of the edge weights in a minimum spanning tree (or forest)
|
|
*/
|
|
public double weight() {
|
|
return weight;
|
|
}
|
|
|
|
// is the weight of edge e strictly less than that of edge f?
|
|
private static boolean less(Edge e, Edge f) {
|
|
return e.weight() < f.weight();
|
|
}
|
|
|
|
// check optimality conditions (takes time proportional to E V lg* V)
|
|
private boolean check(EdgeWeightedGraph G) {
|
|
|
|
// check weight
|
|
double totalWeight = 0.0;
|
|
for (Edge e : edges()) {
|
|
totalWeight += e.weight();
|
|
}
|
|
double EPSILON = 1E-12;
|
|
if (Math.abs(totalWeight - weight()) > EPSILON) {
|
|
System.err.printf("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
|
|
return false;
|
|
}
|
|
|
|
// check that it is acyclic
|
|
UF uf = new UF(G.V());
|
|
for (Edge e : edges()) {
|
|
int v = e.either(), w = e.other(v);
|
|
if (uf.connected(v, w)) {
|
|
System.err.println("Not a forest");
|
|
return false;
|
|
}
|
|
uf.union(v, w);
|
|
}
|
|
|
|
// check that it is a spanning forest
|
|
for (Edge e : G.edges()) {
|
|
int v = e.either(), w = e.other(v);
|
|
if (!uf.connected(v, w)) {
|
|
System.err.println("Not a spanning forest");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check that it is a minimal spanning forest (cut optimality conditions)
|
|
for (Edge e : edges()) {
|
|
|
|
// all edges in MST except e
|
|
uf = new UF(G.V());
|
|
for (Edge f : mst) {
|
|
int x = f.either(), y = f.other(x);
|
|
if (f != e) uf.union(x, y);
|
|
}
|
|
|
|
// check that e is min weight edge in crossing cut
|
|
for (Edge f : G.edges()) {
|
|
int x = f.either(), y = f.other(x);
|
|
if (!uf.connected(x, y)) {
|
|
if (f.weight() < e.weight()) {
|
|
System.err.println("Edge " + f + " violates cut optimality conditions");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Unit tests the BoruvkaMST data type.
|
|
*/
|
|
public static void main(String[] args) {
|
|
In in = new In(args[0]);
|
|
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
|
|
BoruvkaMST mst = new BoruvkaMST(G);
|
|
for (Edge e : mst.edges()) {
|
|
StdOut.println(e);
|
|
}
|
|
StdOut.printf("%.5f\n", mst.weight());
|
|
}
|
|
|
|
}
|