59 lines
2.0 KiB
Java
59 lines
2.0 KiB
Java
|
|
|
|
import edu.princeton.cs.introcs.StdOut;
|
|
import edu.princeton.cs.introcs.StdRandom;
|
|
|
|
/*************************************************************************
|
|
* Compilation: javac BipartiteMatching.java
|
|
* Execution: java BipartiteMatching N E
|
|
* Dependencies: FordFulkerson.java FlowNetwork.java FlowEdge.java
|
|
*
|
|
* Find a maximum matching in a bipartite graph. Solve by reducing
|
|
* to maximum flow.
|
|
*
|
|
* The order of growth of the running time in the worst case is E V
|
|
* because each augmentation increases the cardinality of the matching
|
|
* by one.
|
|
*
|
|
* The Hopcroft-Karp algorithm improves this to E V^1/2 by finding
|
|
* a maximal set of shortest augmenting paths in each phase.
|
|
*
|
|
*********************************************************************/
|
|
|
|
public class BipartiteMatching {
|
|
|
|
public static void main(String[] args) {
|
|
|
|
// read in bipartite network with 2N vertices and E edges
|
|
// we assume the vertices on one side of the bipartition
|
|
// are named 0 to N-1 and on the other side are N to 2N-1.
|
|
int N = Integer.parseInt(args[0]);
|
|
int E = Integer.parseInt(args[1]);
|
|
int s = 2*N, t = 2*N + 1;
|
|
FlowNetwork G = new FlowNetwork(2*N + 2);
|
|
for (int i = 0; i < E; i++) {
|
|
int v = StdRandom.uniform(N);
|
|
int w = StdRandom.uniform(N) + N;
|
|
G.addEdge(new FlowEdge(v, w, Double.POSITIVE_INFINITY));
|
|
StdOut.println(v + "-" + w);
|
|
}
|
|
for (int i = 0; i < N; i++) {
|
|
G.addEdge(new FlowEdge(s, i, 1.0));
|
|
G.addEdge(new FlowEdge(i + N, t, 1.0));
|
|
}
|
|
|
|
|
|
// compute maximum flow and minimum cut
|
|
FordFulkerson maxflow = new FordFulkerson(G, s, t);
|
|
StdOut.println();
|
|
StdOut.println("Size of maximum matching = " + (int) maxflow.value());
|
|
for (int v = 0; v < N; v++) {
|
|
for (FlowEdge e : G.adj(v)) {
|
|
if (e.from() == v && e.flow() > 0)
|
|
StdOut.println(e.from() + "-" + e.to());
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|