346 lines
9.3 KiB
Java
346 lines
9.3 KiB
Java
/*This is a Java Program to implement Graham Scan Algorithm. Graham’s scan is a method of computing the convex hull of a finite set of points in the plane with time complexity O(n log n).*/
|
||
|
||
|
||
//This is a java program to implement Graham Scan Algorithm
|
||
import java.util.Arrays;
|
||
import java.util.Comparator;
|
||
import java.util.Scanner;
|
||
import java.util.Stack;
|
||
|
||
class Point2D implements Comparable<Point2D>
|
||
{
|
||
public static final Comparator<Point2D> X_ORDER = new XOrder();
|
||
public static final Comparator<Point2D> Y_ORDER = new YOrder();
|
||
public static final Comparator<Point2D> R_ORDER = new ROrder();
|
||
public final Comparator<Point2D> POLAR_ORDER = new PolarOrder();
|
||
public final Comparator<Point2D> ATAN2_ORDER = new Atan2Order();
|
||
public final Comparator<Point2D> DISTANCE_TO_ORDER = new DistanceToOrder();
|
||
|
||
private final double x; // x coordinate
|
||
private final double y; // y coordinate
|
||
|
||
public Point2D(double x, double y)
|
||
{
|
||
if (Double.isInfinite(x) || Double.isInfinite(y))
|
||
throw new IllegalArgumentException("Coordinates must be finite");
|
||
if (Double.isNaN(x) || Double.isNaN(y))
|
||
throw new IllegalArgumentException("Coordinates cannot be NaN");
|
||
if (x == 0.0)
|
||
x = 0.0; // convert -0.0 to +0.0
|
||
if (y == 0.0)
|
||
y = 0.0; // convert -0.0 to +0.0
|
||
this.x = x;
|
||
this.y = y;
|
||
}
|
||
|
||
public double x()
|
||
{
|
||
return x;
|
||
}
|
||
|
||
public double y()
|
||
{
|
||
return y;
|
||
}
|
||
|
||
public double r()
|
||
{
|
||
return Math.sqrt(x * x + y * y);
|
||
}
|
||
|
||
public double theta()
|
||
{
|
||
return Math.atan2(y, x);
|
||
}
|
||
|
||
private double angleTo(Point2D that)
|
||
{
|
||
double dx = that.x - this.x;
|
||
double dy = that.y - this.y;
|
||
return Math.atan2(dy, dx);
|
||
}
|
||
|
||
public static int ccw(Point2D a, Point2D b, Point2D c)
|
||
{
|
||
double area2 = (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
|
||
if (area2 < 0)
|
||
return -1;
|
||
else if (area2 > 0)
|
||
return +1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
public static double area2(Point2D a, Point2D b, Point2D c)
|
||
{
|
||
return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x);
|
||
}
|
||
|
||
public double distanceTo(Point2D that)
|
||
{
|
||
double dx = this.x - that.x;
|
||
double dy = this.y - that.y;
|
||
return Math.sqrt(dx * dx + dy * dy);
|
||
}
|
||
|
||
public double distanceSquaredTo(Point2D that)
|
||
{
|
||
double dx = this.x - that.x;
|
||
double dy = this.y - that.y;
|
||
return dx * dx + dy * dy;
|
||
}
|
||
|
||
public int compareTo(Point2D that)
|
||
{
|
||
if (this.y < that.y)
|
||
return -1;
|
||
if (this.y > that.y)
|
||
return +1;
|
||
if (this.x < that.x)
|
||
return -1;
|
||
if (this.x > that.x)
|
||
return +1;
|
||
return 0;
|
||
}
|
||
|
||
private static class XOrder implements Comparator<Point2D>
|
||
{
|
||
public int compare(Point2D p, Point2D q)
|
||
{
|
||
if (p.x < q.x)
|
||
return -1;
|
||
if (p.x > q.x)
|
||
return +1;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
private static class YOrder implements Comparator<Point2D>
|
||
{
|
||
public int compare(Point2D p, Point2D q)
|
||
{
|
||
if (p.y < q.y)
|
||
return -1;
|
||
if (p.y > q.y)
|
||
return +1;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
private static class ROrder implements Comparator<Point2D>
|
||
{
|
||
public int compare(Point2D p, Point2D q)
|
||
{
|
||
double delta = (p.x * p.x + p.y * p.y) - (q.x * q.x + q.y * q.y);
|
||
if (delta < 0)
|
||
return -1;
|
||
if (delta > 0)
|
||
return +1;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
private class Atan2Order implements Comparator<Point2D>
|
||
{
|
||
public int compare(Point2D q1, Point2D q2)
|
||
{
|
||
double angle1 = angleTo(q1);
|
||
double angle2 = angleTo(q2);
|
||
if (angle1 < angle2)
|
||
return -1;
|
||
else if (angle1 > angle2)
|
||
return +1;
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
private class PolarOrder implements Comparator<Point2D>
|
||
{
|
||
public int compare(Point2D q1, Point2D q2)
|
||
{
|
||
double dx1 = q1.x - x;
|
||
double dy1 = q1.y - y;
|
||
double dx2 = q2.x - x;
|
||
double dy2 = q2.y - y;
|
||
if (dy1 >= 0 && dy2 < 0)
|
||
return -1; // q1 above; q2 below
|
||
else if (dy2 >= 0 && dy1 < 0)
|
||
return +1; // q1 below; q2 above
|
||
else if (dy1 == 0 && dy2 == 0)
|
||
{
|
||
// 3-collinear and horizontal
|
||
if (dx1 >= 0 && dx2 < 0)
|
||
return -1;
|
||
else if (dx2 >= 0 && dx1 < 0)
|
||
return +1;
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
return -ccw(Point2D.this, q1, q2); // both above or below
|
||
}
|
||
}
|
||
|
||
private class DistanceToOrder implements Comparator<Point2D>
|
||
{
|
||
public int compare(Point2D p, Point2D q)
|
||
{
|
||
double dist1 = distanceSquaredTo(p);
|
||
double dist2 = distanceSquaredTo(q);
|
||
if (dist1 < dist2)
|
||
return -1;
|
||
else if (dist1 > dist2)
|
||
return +1;
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
public boolean equals(Object other)
|
||
{
|
||
if (other == this)
|
||
return true;
|
||
if (other == null)
|
||
return false;
|
||
if (other.getClass() != this.getClass())
|
||
return false;
|
||
Point2D that = (Point2D) other;
|
||
return this.x == that.x && this.y == that.y;
|
||
}
|
||
|
||
public String toString()
|
||
{
|
||
return "(" + x + ", " + y + ")";
|
||
}
|
||
|
||
public int hashCode()
|
||
{
|
||
int hashX = ((Double) x).hashCode();
|
||
int hashY = ((Double) y).hashCode();
|
||
return 31 * hashX + hashY;
|
||
}
|
||
|
||
}
|
||
|
||
public class GrahamScan
|
||
{
|
||
private Stack<Point2D> hull = new Stack<Point2D>();
|
||
|
||
public GrahamScan(Point2D[] pts)
|
||
{
|
||
// defensive copy
|
||
int N = pts.length;
|
||
Point2D[] points = new Point2D[N];
|
||
for (int i = 0; i < N; i++)
|
||
points[i] = pts[i];
|
||
Arrays.sort(points);
|
||
Arrays.sort(points, 1, N, points[0].POLAR_ORDER);
|
||
hull.push(points[0]); // p[0] is first extreme point
|
||
int k1;
|
||
for (k1 = 1; k1 < N; k1++)
|
||
if (!points[0].equals(points[k1]))
|
||
break;
|
||
if (k1 == N)
|
||
return; // all points equal
|
||
int k2;
|
||
for (k2 = k1 + 1; k2 < N; k2++)
|
||
if (Point2D.ccw(points[0], points[k1], points[k2]) != 0)
|
||
break;
|
||
hull.push(points[k2 - 1]); // points[k2-1] is second extreme point
|
||
for (int i = k2; i < N; i++)
|
||
{
|
||
Point2D top = hull.pop();
|
||
while (Point2D.ccw(hull.peek(), top, points[i]) <= 0)
|
||
{
|
||
top = hull.pop();
|
||
}
|
||
hull.push(top);
|
||
hull.push(points[i]);
|
||
}
|
||
assert isConvex();
|
||
}
|
||
|
||
public Iterable<Point2D> hull()
|
||
{
|
||
Stack<Point2D> s = new Stack<Point2D>();
|
||
for (Point2D p : hull)
|
||
s.push(p);
|
||
return s;
|
||
}
|
||
|
||
private boolean isConvex()
|
||
{
|
||
int N = hull.size();
|
||
if (N <= 2)
|
||
return true;
|
||
Point2D[] points = new Point2D[N];
|
||
int n = 0;
|
||
for (Point2D p : hull())
|
||
{
|
||
points[n++] = p;
|
||
}
|
||
for (int i = 0; i < N; i++)
|
||
{
|
||
if (Point2D
|
||
.ccw(points[i], points[(i + 1) % N], points[(i + 2) % N]) <= 0)
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// test client
|
||
public static void main(String[] args)
|
||
{
|
||
System.out.println("Graham Scan Test");
|
||
Scanner sc = new Scanner(System.in);
|
||
System.out.println("Enter the number of points");
|
||
int N = sc.nextInt();
|
||
Point2D[] points = new Point2D[N];
|
||
System.out.println("Enter the coordinates of each points: <x> <y>");
|
||
for (int i = 0; i < N; i++)
|
||
{
|
||
int x = sc.nextInt();
|
||
int y = sc.nextInt();
|
||
points[i] = new Point2D(x, y);
|
||
}
|
||
GrahamScan graham = new GrahamScan(points);
|
||
System.out.println("The convex hull consists of following points: ");
|
||
for (Point2D p : graham.hull())
|
||
System.out.println(p);
|
||
sc.close();
|
||
}
|
||
|
||
}
|
||
|
||
/*
|
||
|
||
Graham Scan Test
|
||
Enter the number of points
|
||
5
|
||
Enter the coordinates of each points: <x> <y>
|
||
1 2
|
||
2 3
|
||
4 5
|
||
20 10
|
||
6 4
|
||
The convex hull consists of following points:
|
||
(1.0, 2.0)
|
||
(6.0, 4.0)
|
||
(20.0, 10.0)
|
||
(4.0, 5.0)
|
||
|
||
Graham Scan Test
|
||
Enter the number of points
|
||
5
|
||
Enter the coordinates of each points: <x> <y>
|
||
1 2
|
||
2 3
|
||
3 4
|
||
4 5
|
||
5 6
|
||
The convex hull consists of following points:
|
||
(1.0, 2.0)
|
||
(5.0, 6.0) |