384 lines
11 KiB
Java
384 lines
11 KiB
Java
/*This is a Java Program to implement 3D KD Tree and Search an element. In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.*/
|
|
|
|
//This is a java program to find the location of point in 3 dimensional KD Tree
|
|
import java.io.IOException;
|
|
import java.util.Scanner;
|
|
|
|
class KD3DNode
|
|
{
|
|
int axis;
|
|
double[] x;
|
|
int id;
|
|
boolean checked;
|
|
boolean orientation;
|
|
|
|
KD3DNode Parent;
|
|
KD3DNode Left;
|
|
KD3DNode Right;
|
|
|
|
public KD3DNode(double[] x0, int axis0)
|
|
{
|
|
x = new double[3];
|
|
axis = axis0;
|
|
for (int k = 0; k < 3; k++)
|
|
x[k] = x0[k];
|
|
Left = Right = Parent = null;
|
|
checked = false;
|
|
id = 0;
|
|
}
|
|
|
|
public KD3DNode FindParent(double[] x0)
|
|
{
|
|
KD3DNode parent = null;
|
|
KD3DNode next = this;
|
|
int split;
|
|
while (next != null)
|
|
{
|
|
split = next.axis;
|
|
parent = next;
|
|
if (x0[split] > next.x[split])
|
|
next = next.Right;
|
|
else
|
|
next = next.Left;
|
|
}
|
|
return parent;
|
|
}
|
|
|
|
public KD3DNode Insert(double[] p)
|
|
{
|
|
x = new double[3];
|
|
KD3DNode parent = FindParent(p);
|
|
if (equal(p, parent.x, 3) == true)
|
|
return null;
|
|
KD3DNode newNode = new KD3DNode(p,
|
|
parent.axis + 1 < 3 ? parent.axis + 1 : 0);
|
|
newNode.Parent = parent;
|
|
if (p[parent.axis] > parent.x[parent.axis])
|
|
{
|
|
parent.Right = newNode;
|
|
newNode.orientation = true; //
|
|
}
|
|
else
|
|
{
|
|
parent.Left = newNode;
|
|
newNode.orientation = false; //
|
|
}
|
|
return newNode;
|
|
}
|
|
|
|
boolean equal(double[] x1, double[] x2, int dim)
|
|
{
|
|
for (int k = 0; k < dim; k++)
|
|
{
|
|
if (x1[k] != x2[k])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
double distance2(double[] x1, double[] x2, int dim)
|
|
{
|
|
double S = 0;
|
|
for (int k = 0; k < dim; k++)
|
|
S += (x1[k] - x2[k]) * (x1[k] - x2[k]);
|
|
return S;
|
|
}
|
|
}
|
|
|
|
class KD3DTree
|
|
{
|
|
KD3DNode Root;
|
|
|
|
int TimeStart, TimeFinish;
|
|
int CounterFreq;
|
|
|
|
double d_min;
|
|
KD3DNode nearest_neighbour;
|
|
|
|
int KD_id;
|
|
|
|
int nList;
|
|
|
|
KD3DNode CheckedNodes[];
|
|
int checked_nodes;
|
|
KD3DNode List[];
|
|
|
|
double x_min[], x_max[];
|
|
boolean max_boundary[], min_boundary[];
|
|
int n_boundary;
|
|
|
|
public KD3DTree(int i)
|
|
{
|
|
Root = null;
|
|
KD_id = 1;
|
|
nList = 0;
|
|
List = new KD3DNode[i];
|
|
CheckedNodes = new KD3DNode[i];
|
|
max_boundary = new boolean[3];
|
|
min_boundary = new boolean[3];
|
|
x_min = new double[3];
|
|
x_max = new double[3];
|
|
}
|
|
|
|
public boolean add(double[] x)
|
|
{
|
|
if (nList >= 2000000 - 1)
|
|
return false; // can't add more points
|
|
if (Root == null)
|
|
{
|
|
Root = new KD3DNode(x, 0);
|
|
Root.id = KD_id++;
|
|
List[nList++] = Root;
|
|
}
|
|
else
|
|
{
|
|
KD3DNode pNode;
|
|
if ((pNode = Root.Insert(x)) != null)
|
|
{
|
|
pNode.id = KD_id++;
|
|
List[nList++] = pNode;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public KD3DNode find_nearest(double[] x)
|
|
{
|
|
if (Root == null)
|
|
return null;
|
|
checked_nodes = 0;
|
|
KD3DNode parent = Root.FindParent(x);
|
|
nearest_neighbour = parent;
|
|
d_min = Root.distance2(x, parent.x, 3);
|
|
;
|
|
if (parent.equal(x, parent.x, 3) == true)
|
|
return nearest_neighbour;
|
|
search_parent(parent, x);
|
|
uncheck();
|
|
return nearest_neighbour;
|
|
}
|
|
|
|
public void check_subtree(KD3DNode node, double[] x)
|
|
{
|
|
if ((node == null) || node.checked)
|
|
return;
|
|
CheckedNodes[checked_nodes++] = node;
|
|
node.checked = true;
|
|
set_bounding_cube(node, x);
|
|
int dim = node.axis;
|
|
double d = node.x[dim] - x[dim];
|
|
if (d * d > d_min)
|
|
{
|
|
if (node.x[dim] > x[dim])
|
|
check_subtree(node.Left, x);
|
|
else
|
|
check_subtree(node.Right, x);
|
|
}
|
|
else
|
|
{
|
|
check_subtree(node.Left, x);
|
|
check_subtree(node.Right, x);
|
|
}
|
|
}
|
|
|
|
public void set_bounding_cube(KD3DNode node, double[] x)
|
|
{
|
|
if (node == null)
|
|
return;
|
|
int d = 0;
|
|
double dx;
|
|
for (int k = 0; k < 3; k++)
|
|
{
|
|
dx = node.x[k] - x[k];
|
|
if (dx > 0)
|
|
{
|
|
dx *= dx;
|
|
if (!max_boundary[k])
|
|
{
|
|
if (dx > x_max[k])
|
|
x_max[k] = dx;
|
|
if (x_max[k] > d_min)
|
|
{
|
|
max_boundary[k] = true;
|
|
n_boundary++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dx *= dx;
|
|
if (!min_boundary[k])
|
|
{
|
|
if (dx > x_min[k])
|
|
x_min[k] = dx;
|
|
if (x_min[k] > d_min)
|
|
{
|
|
min_boundary[k] = true;
|
|
n_boundary++;
|
|
}
|
|
}
|
|
}
|
|
d += dx;
|
|
if (d > d_min)
|
|
return;
|
|
}
|
|
if (d < d_min)
|
|
{
|
|
d_min = d;
|
|
nearest_neighbour = node;
|
|
}
|
|
}
|
|
|
|
public KD3DNode search_parent(KD3DNode parent, double[] x)
|
|
{
|
|
for (int k = 0; k < 3; k++)
|
|
{
|
|
x_min[k] = x_max[k] = 0;
|
|
max_boundary[k] = min_boundary[k] = false; //
|
|
}
|
|
n_boundary = 0;
|
|
KD3DNode search_root = parent;
|
|
while (parent != null && (n_boundary != 3 * 3))
|
|
{
|
|
check_subtree(parent, x);
|
|
search_root = parent;
|
|
parent = parent.Parent;
|
|
}
|
|
return search_root;
|
|
}
|
|
|
|
public void uncheck()
|
|
{
|
|
for (int n = 0; n < checked_nodes; n++)
|
|
CheckedNodes[n].checked = false;
|
|
}
|
|
|
|
public void inorder()
|
|
{
|
|
inorder(Root);
|
|
}
|
|
|
|
private void inorder(KD3DNode root)
|
|
{
|
|
if (root != null)
|
|
{
|
|
inorder(root.Left);
|
|
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
|
|
+ root.x[2] + ") ");
|
|
inorder(root.Right);
|
|
}
|
|
}
|
|
|
|
public void preorder()
|
|
{
|
|
preorder(Root);
|
|
}
|
|
|
|
private void preorder(KD3DNode root)
|
|
{
|
|
if (root != null)
|
|
{
|
|
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
|
|
+ root.x[2] + ") ");
|
|
inorder(root.Left);
|
|
inorder(root.Right);
|
|
}
|
|
}
|
|
|
|
public void postorder()
|
|
{
|
|
postorder(Root);
|
|
}
|
|
|
|
private void postorder(KD3DNode root)
|
|
{
|
|
if (root != null)
|
|
{
|
|
inorder(root.Left);
|
|
inorder(root.Right);
|
|
System.out.print("(" + root.x[0] + ", " + root.x[1] + ", "
|
|
+ root.x[2] + ") ");
|
|
}
|
|
}
|
|
|
|
public void search(double x, double y, double z)
|
|
{
|
|
search(Root, x, y, z);
|
|
}
|
|
|
|
private void search(KD3DNode root, double x, double y, double z)
|
|
{
|
|
if (root != null)
|
|
{
|
|
search(root.Left, x, y, z);
|
|
if (x == root.x[0] && y == root.x[1] && z == root.x[2])
|
|
System.out.print("True (" + root.x[0] + ", " + root.x[1] + ", "
|
|
+ root.x[2] + ") ");
|
|
search(root.Right, x, y, z);
|
|
}
|
|
}
|
|
}
|
|
|
|
public class KD3D_Search
|
|
{
|
|
public static void main(String args[]) throws IOException
|
|
{
|
|
int numpoints = 5;
|
|
Scanner sc = new Scanner(System.in);
|
|
KD3DTree kdt = new KD3DTree(numpoints);
|
|
double x[] = new double[3];
|
|
x[0] = 0.0;
|
|
x[1] = 0.0;
|
|
x[2] = 0.0;
|
|
kdt.add(x);
|
|
x[0] = 3.3;
|
|
x[1] = 1.5;
|
|
x[2] = 4.0;
|
|
kdt.add(x);
|
|
x[0] = 4.7;
|
|
x[1] = 11.1;
|
|
x[2] = 2.3;
|
|
kdt.add(x);
|
|
x[0] = 5.0;
|
|
x[1] = 12.3;
|
|
x[2] = 5.7;
|
|
kdt.add(x);
|
|
x[0] = 5.1;
|
|
x[1] = 1.2;
|
|
x[2] = 4.2;
|
|
kdt.add(x);
|
|
System.out.println("Enter the co-ordinates of the point: <x> <y> <z>");
|
|
double x1 = sc.nextDouble();
|
|
double y1 = sc.nextDouble();
|
|
double z1 = sc.nextDouble();
|
|
kdt.search(x1, y1, z1);
|
|
System.out.println("\nInorder of 2D Kd tree: ");
|
|
kdt.inorder();
|
|
System.out.println("\nPreorder of 2D Kd tree: ");
|
|
kdt.preorder();
|
|
System.out.println("\npostorder of 2D Kd tree: ");
|
|
kdt.postorder();
|
|
sc.close();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Enter the co-ordinates of the point: <x> <y> <z>
|
|
5.1 1.2 4.2
|
|
True (5.1, 1.2, 4.2)
|
|
Inorder of 2D Kd tree:
|
|
(0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7)
|
|
Preorder of 2D Kd tree:
|
|
(0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7)
|
|
postorder of 2D Kd tree:
|
|
(5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0)
|
|
|
|
Enter the co-ordinates of the point: <x> <y> <z>
|
|
5.1 5.2 5.3
|
|
False
|
|
Inorder of 2D Kd tree:
|
|
(0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7)
|
|
Preorder of 2D Kd tree:
|
|
(0.0, 0.0, 0.0) (5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7)
|
|
postorder of 2D Kd tree:
|
|
(5.1, 1.2, 4.2) (3.3, 1.5, 4.0) (4.7, 11.1, 2.3) (5.0, 12.3, 5.7) (0.0, 0.0, 0.0) |