You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

125 lines
3.4 KiB
Go

// Go offers built-in support for JSON encoding and
// decoding, including to and from built-in and custom
// data types.
package main
import (
"encoding/json"
"fmt"
"os"
)
// We'll use these two structs to demonstrate encoding and
// decoding of custom types below.
type response1 struct {
Page int
Fruits []string
}
// Only exported fields will be encoded/decoded in JSON.
// Fields must start with capital letters to be exported.
type response2 struct {
Page int `json:"page"`
Fruits []string `json:"fruits"`
}
func main() {
// First we'll look at encoding basic data types to
// JSON strings. Here are some examples for atomic
// values.
bolB, _ := json.Marshal(true)
fmt.Println(string(bolB))
intB, _ := json.Marshal(1)
fmt.Println(string(intB))
fltB, _ := json.Marshal(2.34)
fmt.Println(string(fltB))
strB, _ := json.Marshal("gopher")
fmt.Println(string(strB))
// And here are some for slices and maps, which encode
// to JSON arrays and objects as you'd expect.
slcD := []string{"apple", "peach", "pear"}
slcB, _ := json.Marshal(slcD)
fmt.Println(string(slcB))
mapD := map[string]int{"apple": 5, "lettuce": 7}
mapB, _ := json.Marshal(mapD)
fmt.Println(string(mapB))
// The JSON package can automatically encode your
// custom data types. It will only include exported
// fields in the encoded output and will by default
// use those names as the JSON keys.
res1D := &response1{
Page: 1,
Fruits: []string{"apple", "peach", "pear"}}
res1B, _ := json.Marshal(res1D)
fmt.Println(string(res1B))
// You can use tags on struct field declarations
// to customize the encoded JSON key names. Check the
// definition of `response2` above to see an example
// of such tags.
res2D := &response2{
Page: 1,
Fruits: []string{"apple", "peach", "pear"}}
res2B, _ := json.Marshal(res2D)
fmt.Println(string(res2B))
// Now let's look at decoding JSON data into Go
// values. Here's an example for a generic data
// structure.
byt := []byte(`{"num":6.13,"strs":["a","b"]}`)
// We need to provide a variable where the JSON
// package can put the decoded data. This
// `map[string]interface{}` will hold a map of strings
// to arbitrary data types.
var dat map[string]interface{}
// Here's the actual decoding, and a check for
// associated errors.
if err := json.Unmarshal(byt, &dat); err != nil {
panic(err)
}
fmt.Println(dat)
// In order to use the values in the decoded map,
// we'll need to convert them to their appropriate type.
// For example here we convert the value in `num` to
// the expected `float64` type.
num := dat["num"].(float64)
fmt.Println(num)
// Accessing nested data requires a series of
// conversions.
strs := dat["strs"].([]interface{})
str1 := strs[0].(string)
fmt.Println(str1)
// We can also decode JSON into custom data types.
// This has the advantages of adding additional
// type-safety to our programs and eliminating the
// need for type assertions when accessing the decoded
// data.
str := `{"page": 1, "fruits": ["apple", "peach"]}`
res := response2{}
json.Unmarshal([]byte(str), &res)
fmt.Println(res)
fmt.Println(res.Fruits[0])
// In the examples above we always used bytes and
// strings as intermediates between the data and
// JSON representation on standard out. We can also
// stream JSON encodings directly to `os.Writer`s like
// `os.Stdout` or even HTTP response bodies.
enc := json.NewEncoder(os.Stdout)
d := map[string]int{"apple": 5, "lettuce": 7}
enc.Encode(d)
}