112 lines
3.6 KiB
Java
112 lines
3.6 KiB
Java
/*This is a java program to check if the graph contains any Hamiltonian cycle. In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that is a cycle. Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete.*/
|
|
|
|
import java.util.Arrays;
|
|
import java.util.Scanner;
|
|
|
|
public class CheckHamiltonianCycle
|
|
{
|
|
private int V, pathCount;
|
|
private int[] path;
|
|
private int[][] graph;
|
|
|
|
/** Function to find cycle **/
|
|
public void findHamiltonianCycle(int[][] g)
|
|
{
|
|
V = g.length;
|
|
path = new int[V];
|
|
Arrays.fill(path, -1);
|
|
graph = g;
|
|
try
|
|
{
|
|
path[0] = 0;
|
|
pathCount = 1;
|
|
solve(0);
|
|
System.out.println("No solution");
|
|
}
|
|
catch (Exception e)
|
|
{
|
|
System.out.println(e.getMessage());
|
|
display();
|
|
}
|
|
}
|
|
|
|
/** function to find paths recursively **/
|
|
public void solve(int vertex) throws Exception
|
|
{
|
|
/** solution **/
|
|
if (graph[vertex][0] == 1 && pathCount == V)
|
|
throw new Exception("Solution found");
|
|
/** all vertices selected but last vertex not linked to 0 **/
|
|
if (pathCount == V)
|
|
return;
|
|
for (int v = 0; v < V; v++)
|
|
{
|
|
/** if connected **/
|
|
if (graph[vertex][v] == 1)
|
|
{
|
|
/** add to path **/
|
|
path[pathCount++] = v;
|
|
/** remove connection **/
|
|
graph[vertex][v] = 0;
|
|
graph[v][vertex] = 0;
|
|
/** if vertex not already selected solve recursively **/
|
|
if (!isPresent(v))
|
|
solve(v);
|
|
/** restore connection **/
|
|
graph[vertex][v] = 1;
|
|
graph[v][vertex] = 1;
|
|
/** remove path **/
|
|
path[--pathCount] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** function to check if path is already selected **/
|
|
public boolean isPresent(int v)
|
|
{
|
|
for (int i = 0; i < pathCount - 1; i++)
|
|
if (path[i] == v)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/** display solution **/
|
|
public void display()
|
|
{
|
|
System.out.print("\nPath : ");
|
|
for (int i = 0; i <= V; i++)
|
|
System.out.print(path[i % V] + " ");
|
|
System.out.println();
|
|
}
|
|
|
|
/** Main function **/
|
|
public static void main(String[] args)
|
|
{
|
|
Scanner scan = new Scanner(System.in);
|
|
/** Make an object of HamiltonianCycle class **/
|
|
CheckHamiltonianCycle hc = new CheckHamiltonianCycle();
|
|
/** Accept number of vertices **/
|
|
System.out.println("Enter number of vertices");
|
|
int V = scan.nextInt();
|
|
/** get graph **/
|
|
System.out.println("Enter adjacency matrix");
|
|
int[][] graph = new int[V][V];
|
|
for (int i = 0; i < V; i++)
|
|
for (int j = 0; j < V; j++)
|
|
graph[i][j] = scan.nextInt();
|
|
hc.findHamiltonianCycle(graph);
|
|
scan.close();
|
|
}
|
|
}
|
|
|
|
/*
|
|
Enter number of vertices
|
|
6
|
|
Enter adjacency matrix
|
|
0 1 0 0 0 0
|
|
1 0 1 1 0 0
|
|
0 1 0 0 0 1
|
|
0 1 0 0 1 1
|
|
0 0 0 1 0 1
|
|
0 0 1 1 1 0
|
|
No solution |